Abstract

We describean approachto hardware/software co-designthat startswith ahigh-level spec-
ification of atarget machine and a synchronousdata flow representation of an algorithm. The
instruction set description is trandated into a netlist-level machine description. A set of in-
dependent tools successively transform the algorithm into a program for the target processor.
We employ the machine description formalism nML, in which a processor architecture is de-
fined solely by its instruction set semantics. Modularization and sharing of semantic proper-
ties between instructions are modelled by structuring the compl ete description as an attributed
grammar. Analysistoolsguidetheuser in optimizing both the hardware and the software. The
design trajectory is explained by using the ADPCM algorithm as an example application and
acore DSP asinitia target machine.

| mplementation of Complex DSP Systems
Using High-Level Design Tools

Markus FREERICK S, Andreas FAUTH and Alois KNOLL' *
September 6, 1995

1 Introduction

Today’s complex DSP algorithms are often implemented as custom- and semi-custom VLS|
circuits. Hardware synthesis[1] can generate a combination of hard- and software directly
from an algorithmic system specification. Current synthesistools[2, 3, 4] can handlesmall to
medium-sized al gorithms (some hundred operation nodes, simple control flow) or they are spe-
ciadlizedfor ahighly regular structure (e.g. video processing, specialized memory architecture{5]).

For more complex and decision-oriented applications, customizable DSP cores are often
used. Such a core combines a basically fixed general-purpose “ CPU” kernel with extensions
in the form of application-specific accelerator data-paths. Thus, the cost of hand-optimizing
the core design can be shared amongst different applications; new hardwareis only needed to
cope with the “hot spots” of an algorithm.

When designingsuch an architectureandits appli cati on-specificextensions, adesign method-
ology has to be created that encompassesthe specification, test, and implementation of both
software and hardware. “Classic” synthesisenvironmentsare not well suited for this task, be-
causethey are based upon the assumption that the hardware can be modified. Furthermore, the
hardware is described as a netlist built up from register-level hardware entities, which can be
allocated and connected at will.

Our framework([6] is based upon the nML[7] machine description formalism, in which a
processor is described solely by its instruction set. For each instruction, its exact semantics
are given at the register-transfer level. Thereis no explicit controller description; instead, the
designer specifiesan instruction encoding from which a controller can be derived.

By creating a design abstraction at the instruction set level, rapid prototyping of DSP core
architectures becomesfeasible: given aretargetable code generator, the system designer can
compile application benchmarksfor an architecture, analyzethe utilization of its components
and modify the high-level machinedescriptioneasily. All algorithm devel opment and machine-
independent simulationisdoneat thesignal-flow level, in adedicated DSPlanguagelike SILAGE[8]
or in a high-level specification language like ALDiSP[9]. Machine-level simulation can be
performed with instruction set simulators generated from the nM L description. If special opti-

izati de generator doesnot fully utilize a dedicated hardware

_mizationsare needed (e.g.when the co
unRy Pt esrarchaaR RIRREITSH RYdRrdreRa BR700VEPTR e Leivisrieel dradFiarsen Community.

signal machine
flowchart description

flowchart
translation

control flow
transforms

code mapping & J!'
output generation,

)
% code selection
‘%6 \ — machine
Q scheduling & o description
-routi - .
% data-routing Ty |||I|'|II anaIyS|s
1
12* Hlﬂl"
(e]
3
[

0100110010101
1001010010101

Figure 1: Design Trajectory

2 System Overview

An overview of our system’sdesign trajectory isshownis Fig.1. Theagorithm issuppliedin
theform of aflowchart, whichistransformed into theinternal control/data-flow graph (CDFG)
representation. This representation is human-readable and common to al tools. The target
architecture is specified as an nML description. From this, a machine analyzer creates tool-
specific machine description files (since each tool needs different “aspects’ of the machine
description).

In the following, each tool will be described as it is used in the design process. We start
with amachine description.

3 Initial nML Description

Asan (arbitrary) initial target architecture, we usea16-bit core that consistsof RAM, four reg-
isters, and a4-operation ALU (cf. Fig.2). Eachinput to the ALU isrouted through amodifier
that can negate, set to zero, or shift by aconstant amount. The output of the ALU is compared
with zero and the CZ flag is set accordingly. Additions also generate a carry bit. In parallel
to each non-jump instruction, a moveto or from memory can be executed. Thereis only one
jump instruction, which is conditionally controlled by an arbitrary PSW flag.

The nML description for this machine is depicted in Fig.3. This 63-line text sufficesto
completely describe the behaviour of our hardware. Theattributes that describe binary encod-
ing or textual representation of the assembly code are left out for clarity; they are only needed
in the last stage of the compiler.

RPN
dedicated hardware §_
I 16 | 16| 5
o
o ERAM—
=}
Qo
"? 16 16
decoder ETZI
it 16 § 16
SEeE register 2
file = > =
2 16| §
o
address " g ©
e F iyl . JU
1

Figure 2: The Processor Core

ThenML description is structured asagrammar of twenty nonterminals, the root of which
isinstruction. Nonterminalsare either defined viaadternatives (* | ”-rules) or by param-
eterized definitionsthat may refer to both terminals (literal values) and instantiations of other
nonterminals. Each nonterminal can define attributes that refer to its parametersand their at-
tributes. Theinstruction set is defined as the set of al possible derivations of the instruction
tree; eachinstruction’s semanticsisgiven by thevalueof itsaction attribute. Notethat nML
imposes no restriction on the set of possibl e attributes; descriptions can be extended with arbi-
trary attributes (e.g., timing or cost-related) if there are tools that recognize them. Our current
framework supportsattributes for semantics, instruction encoding, and assembly languagerep-
resentation.

4 The Retargeting Process

Each time the user modifiesthe nML description, the framework must be “retargeted”, i.e. all
machine-dependent files have to be updated. Retargeting is performed by an analysistool that
extracts the specific information that each machine-dependent tool needs. Some tools, espe-
cialy thosethat realizetheclassic* software compilation” optimizations (common-subexpression
elimination, constant-folding, conditional scopeoptimization, etc.) arealmost entirely machine-
independent. There are three main stagesin our compiler that depend heavily upon specifics

of the target architecture: expansion, chaining, and scheduling.

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

type
type
type
type
type
type

mem
mem
mem
mem

mem
mem

mem
mem

mem
mem
mem

addr = [0..511] \\ program size

word = 1int (16) \\ word size

midx = [0..1023] \\ main mem size
ridx = [0..3] \\ register set size
flidx= [0..15] \\ bits in PSW
shift= [-8..7] \\ shift range
PC[1,addr] \\ program counter

M [midx, word] \\ main mem size
R[ridx,word] \\ register set size
PSW[flidx, bit] \\ status word
CC[1,bit] alias=PSW[0] \\ carry bit
Cz[1,bit] alias=PSW[1l] \\ zero bit
L[3,word] \\ ALU latches

BUS [1,word] \\ bus latch
NORM[1,word] alias=M[0] \\ memory-

EXP [1,word]
MANT [1, word]

op instruction

op jump (c:bit,
action={if PSW[ci]

alias=M[1]

alias=M[2] \\ ac

\\ mapped

cel.

jump | alu_and move

ci:flidx,

== ¢ then PC =

op alu and move(a:aluop, m:moveop
action={ m.pre; a.action; m.post;}

op moveop

= load | store

op load (from:midx,
pre= {BUS = M[from];}
post={R[to] =

op store(from:ridx;
pre= {BUS = R[from];}
post={M[to] =

op aluop(a:alu;
action={L[0] =

op alu =

op add ()
op and ()
op or ()
op xor ()

op modl = _
op shift 1(s:shift)
op neg 1()
op zero_1()

op modr =
op shift r(s:shift)
op neg r()
op zero_x()

L[1] =

to:ridx)

BUS;}

to:midx)

BUS;}

0l,02,d:ridx; 1l:m

R[o2]; r.action();

a.action;
Ccz = (L[2]1==0);
L[2];}

R[d] =

add | and | or | xor

action
action
action
action

shift

et Rt Rt R

shift r |

Eicnire R Procecenr Core | natriicti on <|at

CC::L[2]=LI0]
L[2]=150]
L[2]1=L[0]
L[2]=L[0]

neg L | zero_

action={L[0]= L[0]l<<s;}

target:addr)
target; }

)

odl; r:modr)
R[ol]; 1l.action();

7

7

action={L[0]= -L[0];}

action={L[0]=

neg R | zero_

action={L[1]= L[1]<<s;}

O;}

r

action={L[1]= -L[1];}

action={L[1]=

O;}

4.1 Expansion

The expansion phase mapsthe “ abstract” operationsof theinitial application algorithm to the
“concrete” set of operationsthat isimplemented by thetarget architecture. To givean example:
our processor core has no hardware multiplier; for each multiplication that occursin theago-
rithm, the expansiontool must find asuitableimplementationin terms of the availabehardware
operators (+,<<, and conditional jumps).

This phaseis based on alibrary that providesthe replacement rules for all operations that
can not be directly implemented. A large set of these rules is machine-independent and pre-
defined; the machine dependency lies in marking those operations available in hardware, and
specifying expansion policiesfor those operationswith multiple implementations of differing
cost. The library can also be extended by hand to provide for “special-purpose” operations
implemented by accelerator paths.

4.2 Chaining

The chaining phase [10] contracts groups of connected operations into data-path operations
that can be executed on one data-path within oneinstruction cycle. On our example architec-
ture, combinations of shift/negate/zero followed by add/and/or/xor operations provide chain-
ing opportunities. Chainingimplements part of the instruction selection task of ordinary com-
pilers; it isbased onalibrary of pattern matching rules. Thislibrary hasto be generatedin toto
from the nML description.

4.3 Scheduling and Routing

The last phase consists of scheduling and data routing: the partial instructions that are gen-
erated in the chaining phase must be ordered in time; signals must be routed through regis-
ters and memory locations. Scheduling and routing are strongly related tasks: the scheduler
tries to minimize the register life-times of signals; the data routing algorithm must determine
which valuesare kept in registers according to their probablelife-times. Asschedulingis NP-
complete, heuristicsplay animportant role. We employ alist scheduler guided by an adaptable
multi-level priority function.

This phase needs a detailed resource model of the target machine, alibrary of the valid
transfer operations, and resourceusageinformati on encodedin reservation tablesfor thechained
instructions.

5 TheApplication Algorithm

Asour exampleal gorithm, we useasubset of the ADPCM (Adaptive Digital Pulse CodeMod-
ulation) algorithm, which is employed in telecommunication applications. In our framework,
algorithms are represented as control-data-flow graphs (CDFGs), i.e. synchronousdata-flow
graphs with control edges. Operation nodesinclude the standard arithmetic functions, a “se-
lect” operator and type conversion operators. Later stagesof the compiler generate additional
transfer- and jump-operations, aswell assignal attributes (such as “lifetime” and “location”).
Conditionsaremodelled by “scopes’, which aremoreflexiblethan standard “ basicblock” con-
trol flow models. The sole memory operation isthe “delay”, which storesavaluefor oneiter-
ation of the algorithm. Each scopeis controlled by a condition, and al signals defined in the

scopearevalid only if that signal istrue. The“select” operation is used to merge the results of
different scopes. Represented asadata-flow graph, thewhole ADPCM algorithm consist of ca.
2600 operation nodes. Our subsetisthe*“ predictor”, which containsalmost all multiplications.
Figure 4 describes from what operationsit is made up.

| Category | Type [Count] % |
abs 10 1.91
add 60 11.47
mult 8 1.53
ALU op neg 28 5.35
shift 33 6.31
sign 25 4.78
and 1 0.19
xor 18 3.44
e 7] 134
o 12 2.29
control It 5 0.96
not 13 2.48
select 24 459
memory delay 18 344
book- bundle 49 9.37
keeping unbundle 46 8.80
rename 156 29.83
accelerator norm 10 191
sumALU 193 | 36.90
sum control 61 11.66
sum total 523 | 100.00

Figure 4: Initial Application Node Count

Note the high percentage of control operations. the ratio of control-related operations to
ALU-operationsis nearly 1:3. A naive compiler would haveto generate at least one compare
and one jump per compare/select, from which a minimal execution time of 48 cycles can be
deduced.

6 Utilization statistics

Our framework includes tools that let the user inspect the CDFG during the different phases
of compilation, both by visually presenting the graph and by giving statistics keyed by node
categories. These statistics guide the designer when modifications to algorithm and hardware
are made. Major pointsof interest are

¢ the number of chainings that were found: If only a subset of the chaining patterns is
used, the instruction encoding can be tightened; modifiers might be moved to different
positionsin the data-path to ensure better chaining possibilities.

| Category [Type | NoHW [Booth | Full Mult

add 143 95 95
neg 46 46 46
shift 226 78 78
ALU op and 1 1 1
hwmult 8
bmult 32
or 40 6 6
xor 18 18 18
control SetEQ 99 43 43
setlL T 53 62 62
not 13 13 13
memory delay 18 18 18
book-keeping | rename 269 137 137
cast 307 101 101
accelerator norm 20 20 20
sum 1253 670 646
sum w/o book-keeping 677 549 525
| nodes after chaining | 1146 | 686] 666 |
| scheduled cycles | 807 | 538 | 471]

Figure5: Three Multiplier Alternatives

o frequent operation combinations: if certain sequences of operations occur frequently,
they can be taken as candidatesfor accelerator data-paths.

o utilization of operators: depending upon how often they are used, operators may bere-
moved or replaced by cheaper alternatives.

An example of thelatter phenomenonis multiplication: our original algorithm contains8
multiplications of 7-bit valueswith 14-bit results. Since our core containsno multiplier, these
are expanded into shift/add combinations of ca. 24 operations each. The inclusion of a hard-
ware multiplier would thus eliminate ca. 192 nodes from the algorithm. As an experiment,
we have specified two accel erator datapaths, one containing afull multiplier, the other imple-
menting a 2-bit Booth step (allowing 8-bit multiplication in 4 steps).

To include the full multiplier, the nML description is extended by two lines:

23 op instruction(i:instr)
23a action={i.action; M[0] = M[1] * M[2];}
23b op instr = jump | alu_and move

This models a memory-mapped multiplier that runs once per cycle.” Figure 5 showsthe
node counts of the three aternatives after expansion and chaining, and the total length of the
algorithm after scheduling.

I The specification for the Booth multiplier is not shown becauseit is basically the same, only somewhat
larger.

7 Conclusion

We have presented aretargetabl e code-generation framework that can be usedto optimizeboth
hardware- and software-componentsof aDSP application. A concisemachinedescription for-
malism servesasthe soleinput language and facilitates an easy retargeting process. For alarge
application algorithm (full ADPCM), our system takes about 3 hours of runtime, most of it is
spent in the scheduling phase. To estimate the quality of the generated code, we compared it
against a hand-coded version of the ADPCM algorithm for an architecture similar to our core
(with Booth-step accelerator) that had atotal of ca. 1500 instructions. Based on this, we esti-
mate that the code produced by our compiler is ca. 30% slower than hand-written code.

Current work isconcernedwith modelling pipelined data-pathsand complex memory mod-
els. [11] showshow annML model canbetranslated into ahardware-level net list; weare now
working on an extensionto nML in whichwe can providea“ net skeleton” that guidesthis pro-
cess. Finally, we are considering the generation of code for multi-processor systems.

References

[1] M. C. McFarland, A. C. Parker, R. Camposano (1990): The High-Level Synthesis of
Digital Systems, in: Proc. of the |IEEE, Vol. 78, No. 2., pp.301-318, 1990

[2] D. Lanneer, G. Goossens, F. Catthoor, M. Pauwels, H. De Man (1991): An Object-
Oriented Framework supportingthe full High-Level SynthesisTrajectory, in: Proceedings
CHDL 91, Marseille, France, April 1991

[3] F. Catthoor (1992): Design Methodologies for application-specific signal processing ar-
chitectures, Tutorial presented at EUSIPCO 92

[4] M. Potkonjak, J. Rabaey (1993): Exploring the Algorithmic Design Space using High
Level Synthesis, in: Eggermont et.al (eds): VLS Sgnal Processing VI, |EEE Special Pub-
lications, pp. 123-131

[5] P.E.R. Lippens, J.L. van Meerbergen, W.F.J. Verhaegh, A.E.van der Werft (1993):
Modular design and hierarchical abstraction in Phideo, VLS Signal Processing, VI, Eg-
germont et.al. (eds), IEEE Sgnal Processing Society, 1993

[6] A. Fauth, A. Knoll (1993): Automated generation of DSP program development tool s us-
ing a machine description formalism, Proceedings| CASSP 93, Minneapolis, Minn., April
1993

[7] M. Freericks (1991): The nML Machine Description Formalism, Technical Report
1991/15, Technische Universitat Berlin, Fachbereich 20, Informatik, Berlin, 1991

[8] Mentor GraphicsEDC (1991): Silage User’s and Reference Manual,

[9] M. Freericks, A. Knoll, L. Dooley (1992): The Real-Time Programming Language
ALDISP-0: Informal Introduction and Forma Semantics, Forschungsberichte des Fach-
bereichs Informatik Nr.92-26, TU Berlin

[10] A. Fauth, G. Hommel, C. Mller, A. Knoll (1994): Globa Code Selectionfor Directed
Acyclic Graphs, 5th International Conference on Compiler Construction (CC'94), LNCS
786, pp. 128-142

[11] A. Fauth, M. Freericks, A. Knoll (1993): Generation of Hardware Machine Models
from Instruction Set Descriptions, VLS| Signal Processing, VI, Eggermont et.a. (eds),
IEEE Signal Processing Society, 1993

