Following Assembly Plans in
Cooperative, Task-Based Human-Robot Dialogue

Mary Ellen Foster

Informatik VI: Robotics and Embedded Systems

Technische Universitat Miinchen
foster@in.tum.de

Abstract

The JAST dialogue system allows a human
and a robot to jointly assemble construction
toys on a common work area. Supporting this
type of dialogue requires that the system have
a representation of assembly plans that per-
mits it both to discuss the details of the plan
and to monitor its execution. We present a
conceptual representation of assembly plans
based on AND/OR graphs, and then describe
how the dialogue manager uses these plans as
the basis for a range of strategies for jointly
carrying out the plans with the user.

1 Introduction

An increasing number of interactive systems are ad-
dressing the task of supporting intelligent coopera-
tion with a human partner, where both partners work
together to achieve a mutual task. This type of
task-based collaboration is particularly relevant for
robots, which are able to sense and perform actions
in the physical world and can often be treated as full
team members (Breazeal et al., 2004; Fong et al.,
2005). For an artificial system to be able to work to-
gether with a human on such a task, the details of the
task must be represented in such a way that the sys-
tem can both follow the task progress and participate
in discussing the details of the task execution.

In this paper, we present the JAST human-robot
dialogue system, which allows the user to cooperate
with the robot in assembling wooden construction
toys. Assembly plans are represented as AND/OR
graphs (Homem de Mello and Sanderson, 1990),
which is the standard mechanism for representing
such plans in autonomous robot assembly. This rep-
resentation allows the dialogue manager to access

Colin Matheson
School of Informatics
University of Edinburgh
colin@inf.ed.ac.uk

the current steps in the plan and to update the state of
the world following user actions. The dialogue man-
ager implements two strategies for explaining a plan
to the user, one that traverses the plan in a depth-first
way, naming objects after they are complete, and an-
other that names and describes the objects top-down.
The interactions supported by the JAST system
is quite similar to the ‘Max’ virtual communica-
tor system developed at the University of Biele-
feld (Kopp et al., 2003; Rickheit and Wachsmuth,
2006). However, the mechanisms underlying the in-
teractions are different: while the core of Max is a
cognitively-motivated agent architecture, JAST uses
a dialogue manager based on the information-state
update paradigm. Our implementation also shares
some features with Blaylock and Allen (2005)’s
collaborative problem-solving (CPS) model of dia-
logue. That model divides the problem-solving pro-
cess into three general phases: determining objec-
tives, determining and instantiating recipes, and ex-
ecuting recipes and monitoring success. While we
do not employ the full formal structure of the CPS
model, the JAST system views collaborative dia-
logue in a similar way. A similar link between do-
main plans and dialogue strategies is also used in the
LeActiveMath mathematics tutorial dialogue system
(Callaway et al., 2006) to allow the system to de-
scribe and cooperatively follow plans drawn from a
domain reasoner and to give context-specific hints to
guide a learner through the graph of a solution.

2 The JAST human-robot dialogue system

The overall goal of the JAST project (‘Joint Action
Science and Technology’) is to investigate the cog-
nitive and communicative aspects of jointly-acting

Figure 1: The JAST dialogue robot

agents, both human and artificial. The JAST human-
robot dialogue system (Rickert et al., 2007) is de-
signed as a platform to integrate the project’s empir-
ical findings on cognition and dialogue with its work
on autonomous robots, by supporting multimodal
human-robot collaboration on a joint construction
task. The user and the robot jointly assemble
wooden construction toys on a common workspace,
coordinating their actions through speech, gestures,
and facial displays.

The robot (Figure 1) consists of a pair of mechan-
ical arms with grippers, mounted in a position to
resemble human arms, and an animatronic talking
head able to produce facial expressions, rigid head
motion, and lip-synchronised synthesised speech.
The input channels consist of speech recognition,
object recognition, robot sensors, and face tracking;
the outputs include synthesised speech, head mo-
tions, and manipulator actions.

In the current version of the system, the robot is
able to manipulate objects in the workspace and to
perform simple assembly tasks. The primary form of
interaction with the current system is one in which
the robot instructs the user on building a particular
compound object, explaining the necessary assem-
bly steps and retrieving pieces as required; at the
end of the paper, we discuss extensions to this sce-

nario. To make joint action essential to the assembly
task, the workspace is divided into two areas: one
belonging to the robot and one to the human. The
pieces necessary for building a desired assembly are
distributed across these areas so that neither of the
agents is able to reach all of the required compo-
nents and must rely on the partner to retrieve them.

3 Representing assembly plans

Like several previous interactive systems designed
to support (physical or virtual) joint assembly (e.g.,
Knoll, 2003; Rickheit and Wachsmuth, 2006), dia-
logues in JAST are based around assembling Baufix
wooden construction toys. The following are the ba-
sic components that are available:

e Threaded Bolts of varying lengths and colours;

e Cubes of varying colours, with four threaded
holes and two unthreaded holes;

o Nuts with a single threaded hole; and
e Slats with three, five, or seven unthreaded holes

For the remainder of this paper, we will consider
the sample object shown in Figure 2, which we will
call a ‘bridge’. This object consists of two small
(three-hole) slats, connected end-to-end using a blue
bolt and a nut, with a cube connected to the other
end of each slat. Some of the sub-components also
have names: the slat+cube combination on the left of
Figure 2 is called the ‘front’, while the combination
on the right is called the ‘back’.

Even for this fairly simple object, there are a num-
ber of different possible assembly sequences: the
slats may be joined together at any point, and the
two cubes can also be attached in any order. There
is some symmetry in the plan: for example, the
two slats are interchangeable, and it is not impor-
tant which end of a slat or which hole in a cube is
used. However, there are also geometric relation-
ships among the pieces that must be respected, such
as the fact that the bolts all go through the slats in
the same direction.

In this section, we present the assembly-plan rep-
resentation used in JAST, which captures all of these
features. We begin by describing the representa-
tion of individual assembly steps and then show how
those steps are combined to describe the full plan.

Three-hole slats Bolts

Cubes Nut

—
L J

ol NON)

(a) Top view

TijQQ O |0

(b) Side view

(c) Bottom view

Figure 2: Assembled object (‘bridge’)

3.1 Assembly steps

The first step in representing an assembly plan is
to represent the individual assembly steps. In our
system, assembly steps are represented in a domain-
specific way, tailored to the types of objects that can
be constructed from Baufix components. Following
Sagerer et al. (2002)—who also represented Bau-
fix assemblies for use in interactive assembly—we
define an assembly step to consist of the following
components:

e Exactly one bolt;

e Any number of unthreaded pieces to insert the
bolt through (cubes, slats, or composite objects
containing cubes or slats); and

e Exactly one threaded fastener to screw onto the
bolt (a nut, a cube, or a composite object con-
taining a cube).

In addition to the above features, an assembly-step
description also includes details to ensure that the
step is performed correctly. These details fall into
three main classes:

e For any component that is a composite object,
which piece of that object should be used;

e Which of the several holes in a slat should be
used; and

e The direction of insertion or fastening.

Note that not all of these details are necessary for
a single step: it does not matter which of the four
threaded holes in a cube is used for an attachment
operation, for instance, and the two end holes of a
slat are also interchangeable, as are the two faces.
However, when the same component is used in more
than one assembly step—as in the sample object,

() L]

Figure 3: Single assembly step

Bolt b; (bolt,small, red)

Insert list [i (slat, three-hole)]

Fastener fj(cube, green)

Details [hole(i;) = Middle, direction(f;) = South,
direction(i;) = South]

Figure 4: Symbolic description of the assembly step

where each of the two slats is used twice—it is im-
portant that all of those steps are performed based on
the same frame of reference to ensure that the rela-
tive positions of the objects are correct. We there-
fore define a canonical orientation of an assembled
object (as in Figure 2(b)).

Figure 3 illustrates the assembly step that creates
the ‘front’ of the sample object: a red bolt is inserted
from above through the end of a three-hole slat and
is then screwed into a threaded hole of a green cube.
Figure 4 gives a symbolic description of this step.

3.2 Assembly plans

Each possible assembly plan for an object is made
up of a sequence of assembly steps, where a sin-
gle object may have a number of such sequences.
In autonomous assembly, the standard solution for
representing such a set of assembly sequences is the
AND/OR graph: a directed acyclic graph that de-
composes a problem into two sets of nodes, AND
nodes and OR nodes. An AND node is satisfied

[)) ®
sscbhl+ch2 csbl+csh2 ssch2+chl

= S

sscbl ssch2

A

Figure 5: AND/OR graph structure for the sample object

only if all of its children are satisfied, while an OR
node is satisfied when exactly one of its children is.
This provides a natural representation for any prob-
lem that can be represented by decomposing a goal
into subgoals, and was first proposed for robot as-
sembly by Homem de Mello and Sanderson (1990).

In an assembly plan, an AND node corresponds
to a single assembly step in which all of the children
are combined to produce a more complex compo-
nent. An OR node, on the other hand, corresponds to
situations in which an assembly may be produced by
different sequences of assembly operations; in this
case, each child of the node corresponds to a dif-
ferent assembly sequence. An AND/OR graph pro-
vides a compact representation of all of the possi-
ble assembly sequences for an object; each individ-
ual sequence can be extracted by traversing the tree
top-down, including all of the children of each AND
node and exactly one child of each OR node.

Figure 5 shows the structure of the AND/OR
graph for the sample object in Figure 2. Nodes
with outgoing edges represent AND nodes, while
nodes highlighted with a grey background are OR
nodes. The leaf nodes in the tree correspond to the
individual pieces required to build the sample ob-
ject, while each internal node corresponds to a sub-
assembly. For example, the subtree rooted at the OR
node marked A indicates that there are two different
assembly sequences that can result in that compo-
nent. The first, corresponding to the left child of A,
involves first attaching the green cube to one end of
the slat to make the ‘front’ and then attaching the

other slat to the other end. The second sequence,
corresponding to the right child of A, first creates the
(unnamed) centre piece and then attaches the cube to
the end.

Each internal node has a unique ID—for exam-
ple, the node corresponding to the assembly opera-
tion from Figure 3 has ID csbl. Three of the nodes
also have labels indicating that the corresponding
sub-assembly has a name: the ‘bridge’, the ‘front’
and the ‘back’.

Previous systems have also addressed the task
of representing assemblies of Baufix-style objects.
Brock (1993) represented components by their geo-
metric properties and described assemblies in terms
of hierarchical planning operators. This system
had the goal of creating plans for a robot to au-
tonomously assemble the components, with no user
interaction. Sagerer et al. (2002) used a similar
representation for assembly actions to the one de-
scribed here, with the goal of recognising complex
objects in an interactive human-robot scenario. This
system did not represent full assembly plans, but
rather structural descriptions sufficient for recogni-
tion. The representation for Baufix assemblies in
for the Max virtual communicator Jung (2003) de-
scribed them in terms of ports and connections of
CAD-based parts with the goal of supporting assem-
bly in virtual environments.

The JAST representation described in this section
is most similar to that used by Sagerer et al. (2002),
although they do not use AND/OR graphs to rep-
resent the assembly plans; the other representations
concentrate more on detailed geometric features that
are less relevant to the current scenario where the
user is the primary agent for assembly operations.

4 Following an assembly plan in dialogue

Interactions in JAST are based around coopera-
tively carrying out assembly plans represented as de-
scribed in the preceding section. As mentioned ear-
lier, in the current scenario, the robot is aware of the
target object and the full plan and instructs the user
on carrying out the assembly, and the user learns to
make particular sub-components along the way. In
Section 5, we discuss possible extended interactions,
but in this section we concentrate on the robot-as-
instructor scenario. Excerpts from typical interac-

Depth-first

SYSTEM[1]: First we need to build a bridge. Okay?

USER[1]: Okay

SYSTEM[2]: [picking up green cube] Insert the red
bolt into the end of a slat and fasten it
with this cube.

USER[2]: Okay

SYSTEM[3]: Well done. You have completed the
front. Now insert

Top-down

SYSTEM[1]: First we need to build a bridge. Okay?

USER[1]: Okay

SYSTEM[2]: To build a bridge we need to make a

front and a back. To make a front, insert
the red bolt ...

Figure 6: Example depth-first and top-down interactions

tions using two different explanation strategies are
shown in Figure 6. In the remainder of this section,
we describe how the components of the system work
together to support such interactions.

The required knowledge is distributed across
three main components of the system. The task
planner stores and maintains the AND/OR graph
corresponding to the current plan, updating it as ap-
propriate based on information from other modules.
The object inventory tracks the properties and lo-
cations of Baufix objects in the world, using infor-
mation from the object-recognition system as well
as the task planner. Finally, the dialogue man-
ager (DM) receives a unified representation of user
speech and actions from the input-processing com-
ponents and selects appropriate system output based
on the current state of the interaction and of the plan,
along with the user’s assumed knowledge. It also
updates the state of other components based on the
events in the dialogue.

The DM is based on the TrindiKit dialogue-
management toolkit, which uses the information-
state update approach to dialogue management
(Traum and Larsson, 2003). The JAST information
state (IS) includes data about the user’s knowledge,
the current step in the plan that is being executed,
the history of steps that have been described to the
user, and the history of the interaction. Figure 7 in
Section 4.2 below contains an example IS and some
further discussion.

Table 1: Initial object inventory

ID Type Properties Location

1 Bolt Color=Red Table(User)
2 Bolt Color=Orange Table(Robot)
3 Bolt Color=Blue Table(Robot)
4 Cube Color=Yellow Table(Robot)
5 Cube Color=Green Table(Robot)
6 Cube Color=Green Table(User)
7 Nut Color=Orange Table(Robot)
8 Slat Size=3-hole Table(User)
9 Slat Size=3-hole Table(User)
10 Slat Size=5-hole Table(User)

4.1 Loading the plan

Before the first utterance in the dialogue excerpt, the
system must select a target object to assemble. In
our scenario, where the robot knows the plan and
must instruct the user, the choice of target object
is fixed, so the DM simply instructs the task plan-
ner to load the AND/OR graph for the target object
from its library of fully-specified plans. At the mo-
ment, the task planner also selects a specific assem-
bly sequence from the AND/OR graph at the point
that the plan is loaded, favouring sequences that in-
clude more named sub-components (e.g., the ‘front”)
to ensure that the user learns to build them.

4.2 Describing assembly steps to the user

Once the AND/OR graph has been loaded and a se-
quence selected, the DM must describe the assem-
bly process to the user. The DM can proceed depth-
first, describing plan steps and naming objects when
they are complete, or it can work top-down and de-
scribe and name each step in advance; both of these
strategies are illustrated in Figure 6. In both cases
the actual path through the plan is the same, and the
‘current state’ of the dialogue as represented in the
IS is a crucial component. A truncated example of
an IS (relevant to either strategy) is contained in Fig-
ure 7 and shows the basic plan information and typi-
cal dialogue history (DH) and user knowledge (UK)
representations. The names of the plan nodes (e.g.,
‘front’ or ‘bridge’) are associated inside the plan-
ner with (language independent) concepts which the
language generation system turns into lexical items
in English or German; the DM only needs to know
the plan node identifier. The DH contains an ordered

NAME: bridge
PLAN: [STEPSTACK: [csb2, csb1+csb2]
IS: DESCRIBED: [csb1]

DH: [act(sys,describe_step),act(usr,accept), . . .]
UK: {front}

Figure 7: Part of the IS Structure

list of completed acts, and the user knowledge is rep-
resented as a set of ‘known’ object types. This set
is maintained throughout the dialogue, so if we are
constructing an object for the second time we can
ask the user if they remember how to build it.

In operation, the DM first requests the children
of the tree node corresponding to the step to be de-
scribed. A check is carried out to determine whether
all the objects mentioned in the step are either ba-
sic components (bolts, cubes) or known to the user;
if not, the system picks the left corner child and it-
erates until such a node is found. If the depth-first
strategy is being pursued, the DM proceeds without
producing linguistic output until it reaches a node
where everything necessary to build the object ex-
ists. In the top-down approach the system names
each node and describes the general structure as it
proceeds, whereas the depth-first strategy assumes
that objects are built before they are named. The
‘delayed naming’ aspect of the depth-first approach
is not, of course, necessary; it is perfectly possible
to tell the user what is being constructed before it is
described. However, the naming strategy is an as-
pect of dialogue that we would like to experiment
with, and it seems less natural to combine top-down
description with delayed naming.! As each step is
completed, the DM sends the planner a ‘step exe-
cuted’ message with the relevant node name, which
updates the system state as described in Section 4.5.
When the whole plan is complete, the system loads
the next assembly plan or terminates.

'Top-down with delayed naming would suggest system ut-
terances such as:

Let’s build a bridge. Insert a blue bolt through a
green slat and fasten it with a yellow cube. This is
a front. Now insert ...

From the perspective of Centering Theory (Grosz et al.,
1995), the focus shifts are non-optimal.

<rst>

<consequence id="idl">

<item idref="id2" />

<item idref="id3" />
</consequence>
<item id="id2" type="impersonal">
<pred action="build" result="front" />
</item>
<join id="id3">

<item idref="id4" />

<item idref="id5" />
</join>

<item id="id4" type="imperative">
<pred action="insert">
. contents of insert

</pred>

</item>

<item id="id5" type="imperative">
<pred action="fasten">

. contents of fasten

</pred>

</item>

</rst>

Figure 8: An RST ‘Consequence’ Structure in XML

4.3 System Output

The DM builds XML structures containing RST-
style representations (Mann and Thompson, 1988)
to be passed on to the output planner and ultimately
the language generator. The top-down strategy uses
‘consequence’ relations to link the actions being
described and their results, as illustrated in Figure
8. The ‘insert’ and ‘fasten’ elements in the figure,
which describe the objects, have been removed for
brevity. The type attribute on item elements speci-
fies the basic clause class; impersonal clauses such
as ‘to build a bridge’, imperatives such as ‘insert the
bolt’, and declaratives as in ‘the bridge is complete’.

An important aspect of describing a step to the
user is selecting an appropriate means of referring
to the required objects, which is performed by the
output planner and depends on the information in
the object inventory. The initial object inventory for
the sample interaction is shown in Table 1. When
the system generates the SYSTEM[2] utterance in
the second (top-down) extract, the back and the front
do not yet exist, so they are referred to indefinitely.
However, there is one red bolt on the user’s table,
so a definite is used, while there are 3 relevant slats,
so again an indefinite is appropriate. The robot has
selected a cube to pick up (if more than one avail-
able object matches the description the choice is ran-
dom), so in this case a demonstrative is used.

4.4 Responding to user actions

Currently the user may respond in a restricted num-
ber ways to a system utterance; the range will be ex-
tended in the near future, but for now we allow ver-
bal acknowledgements of various kinds, indications
of misunderstandings, and yes-no answers. The
sample dialogues in Figure 6 contain examples of
acknowledgements which are interpreted in different
ways. Following SYSTEM[1], ‘okay’ is interpreted
mainly as indicating understanding, while following
SYSTEM[2] ‘okay’ is assumed to indicate that the
user has performed the actions described. Depend-
ing on the confirmation strategy used by the system,
such interpretations might be queried explicitly; the
balance between verbal confirmation and the cur-
rent optimistic grounding approach is another area
for experimentation.

The user can indicate that something is misunder-
stood, in which case previous output is typically re-
peated. The user may also be asked yes-no ques-
tions, which are again interpreted differently de-
pending on the dialogue context. The most obvious
example is in cases where the DM reaches a plan
step whose result is already listed in the user knowl-
edge set. In this situation the system has the op-
tion of asking the user whether or not they remember
how to build the object in question.

4.5 Updating the state

Once an assembly step has been completed, the state
of the task planner must be updated. As noted above,
the DM informs the rest of the system that the step
has been executed. This message includes the IDs of
the objects that were used, and in response the task
planner performs two actions: it updates the set of
world objects in the inventory, and it marks the step
as completed in its internal AND/OR graph.
Completing an assembly step has two effects on
the object inventory. First, all of the components
that were involved in the assembly are no longer
available for use, so their location is adjusted to in-
dicate that they are part of a larger component. Sec-
ond, a new object is introduced into the world cor-
responding to the sub-assembly that was created by
the completed step. The updated object inventory
after USER[2] in Figure 6 is shown in Table 2, with
objects changed by the action indicated by italics.

Table 2: Updated object inventory

ID Type Properties Location

1 Bolt Color=Red Assembled(11)
2 Bolt Color=Orange Table(Robot)
3 Bolt Color=Blue Table(Robot)
4 Cube Color=Yellow Table(Robot)
5 Cube Color=Green Assembled(11)
6 Cube Color=Green Table(User)

7 Nut Color=Orange Table(Robot)

8 Slat Size=3-hole Assembled(11)
9 Slat Size=3-hole Table(User)

10 Slat Size=5-hole Table(User)

11 Comp(front) Parts=(1,5,8) UserHand

Completing a step also affects the information
state. In this case, the user has just built a compo-
nent called a ‘front’, so we can update the model of
the user’s knowledge to indicate that this is likely to
be a ‘known’ object. If a subsequent assembly task
also requires a ‘front’, we can ask the user to build it
without needing to explain it in detail, or we can ask
the user if they remember the procedure.

5 Discussion

We have described the issues involved in represent-
ing assembly plans for use in a task-based dialogue
system and shown how we use AND/OR graphs to
represent Baufix assembly plans within the JAST
human-robot dialogue system. We have then shown
how the dialogue manager uses information from the
task planner and the object inventory to describe the
task plan and the required steps, to respond to ac-
tions and requests of the user, and to update the sys-
tem state following assembly operations.

The dialogue manager has two distinct strategies
available for describing a plan. With the top-down
strategy, the structure of the plan is described be-
fore it is executed; with the depth-first strategy, the
dialogue manager proceeds directly to concrete as-
sembly operations and names sub-components only
after they are completed. The current JAST system
will shortly undergo a user evaluation in which naive
users interact with the system in the current robot-
as-instructor scenario. Among other questions, this
evaluation will compare these two strategies using
measures such as user satisfaction and enjoyment
and the success and efficiency of the assembly task.

The system is still under development, and sev-
eral enhancements are planned for the next version.
First, we aim to extend the system to support inter-
actions in which both the robot and the user know
the assembly plan. In such scenarios, it is likely
that there would be much less verbal interaction be-
tween the participants. To support this, we will in-
tegrate components from another system (Erlhagen
et al., 2007) that addresses a similar human-robot
joint assembly task, but that uses dynamic neural
fields to infer the user’s goals from their non-verbal
behaviour and to select complementary actions.

We would like to to move beyond the current
small set of simple assembly plans, which are at the
moment stored as hard-coded ‘recipes’ and loaded
on request. It would increase the system’s flexibility
if an AND/OR graph could be created automatically
or semi-automatically from a symbolic description
of the assembled object; this would also enable the
system to learn assembly plans interactively in co-
operation with the user. More complex plans could
also require different interaction strategies and a dif-
ferent, more flexible connection between the task
planner and the dialogue manager in which a single
assembly sequence is not selected at the start.

6 Acknowledgements

This work was supported by the EU FP6 IST
Cognitive Systems Integrated Project ‘JJAST’ (FP6-
003747-1P). We thank the Planning/Language Inter-
est Group at the University of Edinburgh and the
Londial reviewers for useful feedback.

References

N. Blaylock and J. Allen. 2005. A collaborative problem-
solving model of dialogue. In Proceedings, 6th SIG-
dial Workshop on Discourse and Dialogue, pages 200—
211.

C. Breazeal, A. Brooks, J. Gray, G. Hoffman, C. Kidd,
H. Lee, J. Lieberman, A. Lockerd, and D. Chi-
longo. 2004. Tutelage and collaboration for humanoid
robots. International Journal of Humanoid Robotics,
1(2):315-348. doi:10.1142/50219843604000150.

O. Brock. 1993. InterPlan—ein interaktives Pla-
nungssystem. Diplomarbeit (Master’s thesis), Techni-
cal University of Berlin.

C. Callaway, M. Dzikovska, C. Matheson, J. Moore, and
C. Zinn. 2006. Using dialogue to learn math in the Le-

ActiveMath project. In Proceedings, ECAI 2006 Work-
shop on Language-Enabled Educational Technology.

W. Erlhagen, A. Mukovskiy, F. Chersi, and E. Bicho.
2007. On the development of intention understand-
ing for joint action tasks. In Proceedings, 6th IEEE
International Conference on Development and Learn-
ing. doi:10.1109/DEVLRN.2007.4354022.

T. W. Fong, I. Nourbakhsh, R. Ambrose, R. Simmons,
A. Schultz, and J. Scholtz. 2005. The peer-to-peer
human-robot interaction project. In AIAA Space 2005.

B. J. Grosz, S. Weinstein, and A. K. Joshi. 1995. Cen-
tering: a framework for modeling the local coherence
of discourse. Computational Linguistics, 21(2). ACL
Anthology J95-2003.

B. Jung. 2003. Task-level assembly modeling in virtual
environments. In Proceedings of Computational Sci-
ence and Its Applications (ICCSA 2003).

A. Knoll. 2003. A basic system for multimodal robot in-
struction. In P. Kiihnlein, H. Rieser, and H. Zeevat,
editors, Perspectives on Dialogue in the New Millen-
nium, volume 114 of Pragmatics & Beyond New Se-
ries, pages 215-228. John Benjamins.

S. Kopp, B. Jung, N. Lessmann, and I. Wachsmuth. 2003.
Max — a multimodal assistant in virtual reality con-
struction. Kiinstliche Intelligenz, 4(03):11-17.

W. Mann and S. Thompson. 1988. Rhetorical structure
theory: toward a functional theory of text organization.
Text, 3:243-281.

L. S. Homem de Mello and A. C. Sanderson. 1990.
AND/OR graph representation of assembly plans.
IEEE Transactions on Robotics and Automation,
6(2):188-199. doi:10.1109/70.54734.

M. Rickert, M. E. Foster, M. Giuliani, T. By, G. Panin,
and A. Knoll. 2007. Integrating language, vision
and action for human robot dialog systems. In Pro-
ceedings of HCI International 2007. doi:10.1007/
978-3-540-73281-5_108.

G. Rickheit and I. Wachsmuth. 2006. Situated Communi-
cation. Mouton de Gruyter, Berlin.

G. Sagerer, C. Bauckhage, E. Braun, J. Fritsch, F. Kum-
mert, F. Lomker, and S. Wachsmuth. 2002. Structure
and process: Learning of visual models and construc-
tion plans for complex objects. In G. D. Hager, H. 1.
Christensen, H. Bunke, and R. Klein, editors, Sensor
Based Intelligent Robots, pages 317-344. Springer.

D. Traum and S. Larsson. 2003. The information state ap-
proach to dialogue management. In J. C. J. Van Kup-
pevelt and R. W. Smith, editors, Current and New Di-
rections in Discourse and Dialogue, pages 325-353.
Kluwer Academic Publishers.

http://dx.doi.org/10.1142/S0219843604000150
http://dx.doi.org/10.1109/DEVLRN.2007.4354022
http://www.aclweb.org/anthology/J95-2003
http://www.aclweb.org/anthology/J95-2003
http://dx.doi.org/10.1109/70.54734
http://dx.doi.org/10.1007/978-3-540-73281-5_108
http://dx.doi.org/10.1007/978-3-540-73281-5_108

	1 Introduction
	2 The JAST human-robot dialogue system
	3 Representing assembly plans
	3.1 Assembly steps
	3.2 Assembly plans

	4 Following an assembly plan in dialogue
	4.1 Loading the plan
	4.2 Describing assembly steps to the user
	4.3 System Output
	4.4 Responding to user actions
	4.5 Updating the state

	5 Discussion
	6 Acknowledgements

