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Abstract— We propose and implement an algorithm based on
reachability analysis to estimate the region of attraction (ROA)
of an equilibrium point for nonlinear systems. The stability
region is obtained via the computation of forward reachable
sets. We compare our results with well-established techniques in
this area. In particular, we consider the optimization of the Lya-
punov function (LF) sub-level set using sum-of-squares (SOS)
decomposition, and the computation of backward reachable sets
of a target set using the viscosity solution of a time-dependant
Hamilton-Jacobi-Isaacs (HJI) formulation. Our method can
overcome many limitations imposed on the applicability of
Lyapunov-based approaches, such as conservatism in estimating
the stability region, and difficulties associated with choosing
a suitable LF. This is due to the fact that our reachability
algorithm does not require a LF in order to provide an
estimate of the ROA. Various numerical examples show that
our proposed approach can estimate the exact ROA quite
accurately, and more importantly, scales moderately with the
system dimension compared to alternative techniques.

I. INTRODUCTION

The estimation of stability regions of nonlinear systems is
of fundamental importance in a wide range of applications,
such as autonomous systems [1], [2], control of robotic
manipulators [3], and transient stability of power systems [4],
[5]. This problem is continuously receiving a lot of attention
in literature as it still remains unsolved. Simply put, instead
of examining stability of an equilibrium point, one is often
more interested in determining the region from which an
initial state can be attracted by this equilibrium. Finding a
stability region, however, is difficult due to the fact that it is
often a complicated set hard to be expressed analytically [6].
Developing efficient algorithms to tackle this problem is
an extremely challenging task. These challenges consists
of, but are not limited to, the conservatism in estimating
the region of attraction (ROA), the overall computational
costs, and the associated memory requirements, which grow
rapidly with system dimension. In this work, we propose
an algorithmic procedure based on forward reachability
computations to provide accurate estimates of the stability
region. A general literature review about reachability analysis
is found in [7]-[9].

A. Related Work

The dominant techniques for estimating the ROA are based
on Lyapunov’s stability theory and its various extensions.
These methods can offer sufficient conditions for verifying
stability of ordinary differential equations (ODEs), using the
so-called Lyapunov functions (LFs). Among its variations,
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the Zubov’s method and the maximal LF method [10] can
obtain the exact stability region. However, both techniques
are generally difficult to employ, since they reformulate the
problem into solving a partial differential equation (PDE)
whose solution is not easily found in most cases. An al-
ternative approach is based on the inner-approximation of
the exact ROA via the optimization of the LF sub-level set.
This approach proved to be quite effective following the
rapid development of semi-algebraic geometry and sum of
squares (SOS) decomposition, which resulted in increasingly
efficient optimization techniques, involving linear matrix
inequalities (LMIs) and semi-definite programming (SDP),
see for example [11]-[16] and the references therein.

However, the Lyapunov-based techniques have several
drawbacks which limit their applicability in practice. First,
the approach relies on the existence of suitable LFs which
are extremely difficult to find for nonlinear systems, due to
the non-constructive nature of the Lyapunov theory; that is
in other words the theorem only ensures the existence of a
basin of attraction, yet it does not provide a systematic way
to find an initial feasible LF. Although a quadratic LF can
be easily constructed by solving the Lyapunov equation of
the linearized system, it only captures the local behaviour of
the nonlinear ODEs around the equilibrium point.

Additionally, Lyapunov methods suffer from conservatism
in estimating the ROA, since the techniques often relax
the optimization problem, to maximize the sub-level set of
the LF. This is done either by enforcing convexity of the
solution with conservative LMI conditions, or by employ-
ing non-convex bilinear matrix inequalities [17]. Another
disadvantage of this class of techniques is that it cannot
formally verify if system constraints are met, e.g. if a robot
manipulator exceeds maximum torque or when a bus voltage
of a power system drops beyond limitations imposed by
the grid operator. This is due to the fact that Lyapunov
methods only analyze if a steady state of a disturbed system
is eventually reached.

An alternative direction is a class of methods which is
not based on the Lyapunov stability theory. An overview
covering the early contributions of this kind of techniques
is found in [18]. Very recently, the computation of back-
ward reachable enclosures using level set methods (LSMs),
starting from a small neighborhood around the equilibrium
point, has turned out to be an effective tool that can pro-
vide accurate estimates of the ROA, see e.g. [19]. This is
achieved using an Eulerian technique via the formulation
of a Hamilton-Jacobi-Isaacs (HJI) PDE, where it is proven
that the viscosity solution of the time-dependent HJI PDE
provides an implicit surface representation of the continuous
backward reachable set [20]. The main drawback of this



technique, however, is that the computational requirements
grow rapidly with the system dimension, due to the fact
that no analytical solution exists for the set of PDEs. Thus,
one has to continuously perform a discretization of the state
space, resulting in an exponential complexity with respect to
the number of continuous state variables. Another limitation
of LSMs is that they only provide an accurate approximation
of the reachable set, rather than a rigorous enclosure of
it; thus it does not qualify as a formal technique for the
estimation of the ROA [21].

The approach presented in this work is similar in spirit
to the aforementioned class of methods; however, the key
distinction is that our algorithm is based on Lagrangian
techniques, which in contrast to Eulerian methods, com-
pute reachable sets similar to numerical integration. This is
achieved by propagating the set of reachable states instead
of only computing the solution for a single value. The
consequence of this is that we can handle higher-dimensional
systems, since the associated memory requirements grow
moderately with the system dimension, see e.g. [22], [23].

B. Contributions

To the best of our knowledge, this is the first work
presenting an algorithmic procedure to estimate the ROA
of an equilibrium point via the computation of forward
reachable sets. In this work, we describe and implement a
scalable and versatile algorithm that can provide accurate,
and more importantly, provable estimates of the stability
region. By versatile, we refer to the ability of the algorithm to
deal with general systems involving non-polynomial models,
thus covering a wide range of applications. Furthermore, this
is the first work comparing three different techniques that can
provide estimates of the stability region. Namely, we com-
pare our Lagrangian approach (forward reachability com-
putation) with the Eulerian method (backward reachability
computation) and the Lyapunov direct method (optimization
of the LF sub-level set).

The remainder of the paper is organized as follows: In
Section II we formulate the problem and present basics for
computing reachable sets using the Lagrangian technique.
The estimation algorithm is described in Section III, and in
Section IV we illustrate the applicability of our algorithm
and compare it with existing techniques. Conclusions and
future work are discussed in Section V.

II. PRELIMINARIES

We denote by N R"™ the set of natural and real numbers
with dimension n. For two sets X', ) C R", the operator &
returns the Minkowski sum X @Y = {z +y|z € X,y €
Y}. For two real numbers a,a@ € R™ with ¢ < @, a closed
multidimensional interval is Z = [a, @], and the union of k
intervals is denoted by UF_;Z;.

A. Problem Formulation

Consider autonomous nonlinear systems of the form

&(t) = f(2(1)), (1)

where © — R" is the vector of state variables, and the
function f : R™ — R" is locally Lipschitz continuous. The
dependency on the time ¢ is often omitted for simplicity of
notation. Our objective is to estimate the stability region

@) = {a(0) €R" : lim y(wt) =a.}, @

where x; € R” is the stable equilibrium point (SEP) and
~v(x;t) is a system trajectory of (1) starting from the initial
condition z(0).

The problem is approached in this paper using reachability
analysis, which has proven to be an efficient tool for safety
verification in a variety of applications, such as e.g. aircrafts
collision avoidance [20], power systems [24], [25], and
robotic aerial vehicles [26]. Reachability analysis basically
determines the set of states that a system can reach, over a
time horizon ¢y, starting from a set of initial states R(0):

reach(R(0),t;) = {z(t) € R"™ : z(t) satisfies (1)
within [0, ¢/] for 2(0) € R(0)}. (3)

Note that (3) corresponds to the exact reachable set. How-
ever, it is proven that exact reachable sets for the class
of nonlinear systems are not computable [27], thus an
over-approximation, which includes all behaviours of (1) is
performed as tightly as possible.

B. Computation of Forward Reachable Sets

Our reachability algorithm is based on abstracting the
original differential equations (1) into a linear differential
inclusion (LDI) for each consecutive time interval 7, :=
[tkytr+1], where t, = k-7, such that k € N, and r €
R* corresponds to the time step and the time increment,
respectively. Since the linearization of (1) causes additional
errors, these errors are determined in an over-approximated
manner and considered as uncertain inputs. Recomputing the
linearization for each 7, allows the over-approximation to
remain small and ensures accurate results.

After introducing the linearization point 3 € R", with k
as the time step, and defining Ax := x — &, we abstract the
original nonlinear system (1) at each time interval 73, by a
LDI expressed as a first order Taylor expansion around Zj
with the Lagrangian remainder:

Vt €1 = [tk,tk+1] :

—~ Of (z)
3xj

z(t) € )

Tr=x

Azj & f(Zk) & L(Tk),  (4)

Jj=1

=: A Az =:U(Tk)

where A, € R™*" is the system matrix, I/ is the set of
uncertain inputs, and £ denotes the set of the Lagrangian
remainder containing all possible linearization errors within
the time interval 7. It can be over-approximated according
to [28] as

L(y) = {L ER" : L; = 12A2T HD(¢)Ax,
YIS R(Tk)a C € IH(R(Tk))}v (5)



with TH(-) returning the interval enclosure of a set and
HU)(¢),7 € {1...n} is the set of Hessian matrices,
corresponding to the second-order partial derivatives of the
function f(-):

& fi(x) | 821 () |
Ox? z=C 010z, 12=C
T I N T
a2 i \T 8? j(x
8x£8(x3 |$=< s afxé ) |ac=§

with the subscript j corresponding to the j-th coordinate.
Here R(7;) denotes the reachable set at 7; which is
computed shortly after. We define r := t;41 — t; and u, as
the center of U. The reachable set R, (tx+1) of the dynamics
& = ApAx + u,, enclosed by the LDI (4), is based on the
well-known solution of linear state-space equations

Raltpr1) = e R(ty) @ Ry(r), (7

where R, (r) is the set which over-approximates the particu-
lar solution of the linear state-space equation. The reachable
set at the next point in time ¢;1, and for the time interval
Ti = [tk, tk+1], are obtained as follows

R(te+1) = Ra(te+1) © Ru(r), ®)
R(i) = conv (R(tx), Ra(tet1)) ®F & Ru(r). (9)

The operator conv(-) returns the convex enclosure of two
sets, and the set F considers enlargement of the resulting
convex hull enclosure, in order to account for the assumption
that trajectories over 7y are straight lines. Finally the reach-
able set R, (r) accounts for the uncertainty of the input set
U. The expressions of the following sets: £, R,(r), F, and
R.(r) are derived in our previous work [9, Ch. 3].

III. ESTIMATION OF THE ROA

In this section, we present our proposed algorithm to
estimate the stability region of the equilibrium point = using
forward reachability computations. An overview covering the
basic steps of our approach is illustrated in Fig. 1. The
estimation algorithm consists of the following steps:

Step (D Construction of a target set: Since we require a
termination condition for forward reachable sets, we establish
a small provable region around the equilibrium point. Once
a reachable set is enclosed by this region, we can terminate
our computations and conclude that all solutions converge to
the equilibrium point. To this end, we introduce the target
set T, C R™ defined as the multidimensional interval

7‘; = [gsa TS])

10
with z, =z, — ¢, (19)

Ts =Tg+ €
where € is chosen to be sufficiently small (e.g. 1E-3) such that
T4 only surrounds a small neighborhood around x4, thus en-
suring attraction to the equilibrium. This step is based on the
definition of stability in the sense of Lyapunov [6, Def. 4.1],
which states that x4 attracts any initial states 2:(0) located
adequately close.

Step Q@)  Enlargement of the target set: The step is
illustrated in Fig. 2 by the blue boxes. Here we perform an

Increment 7 and /

Fig. 1. Overview of our proposed approach to estimate the ROA of an
equilibrium point via the computation of forward reachable sets.

iterative procedure to enlarge 7, using forward reachability
computations. The enlargement of 7, is executed for two
reasons: Firstly, in order to obtain a larger provable region
that guarantees convergence to the equilibrium; secondly, and
more importantly, to reduce the overall computational costs
associated with reachability computations of initial states far
away from 7, as described shortly.

In each iteration, the enlarged target set is selected as the
initial reachable set, such that

R(0) = A [z, 7], Y

where A € RT is a tunable enlargement factor set by the
user. For practical reasons, the iterative procedure stops if

L¢T, (12)
where the set £ is the maximum linearization errors chosen
by the user. Therefore, the enlargement procedure of 7, is
limited and would only result in a very conservative stability
region using forward reachability computations. Hence, in
the following step, we investigate the domain surrounding
Ts using a complementary procedure in order to estimate
the ROA more accurately.

Step ®) Partitioning of the domain of investigation: The
step is illustrated in Fig. 2, where the black boxes present
a recursive discretization of the grid. Here, we perform a
partitioning of the state space to overcome the limitations
imposed on the enlargement of 7,. Clearly, it is neither
feasible nor practical to discretize the whole state space when
attempting to estimate the stability region. This is based on
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Fig. 2. Step-by-step computation of the stability region using forward reachable sets. The blue boxes represent the iterative enlargement of the target set

Tg4 constructed around a SEP. The boxes show the recursive partitioning of the grid to provide an accurate estimate of the ROA. The dark gray areas are
the cells whose reachable set is attracted by the enlarged target set, whereas the white areas correspond to the cells whose reachable set does not converge.
Three random cells were chosen to illustrate the evolution of the reachable set (dark red), where the computation stops (highlighted by the red area)
when the reachable set R(t), ¢ € [0, 00 is either a subset of the target set R(¢) C Ty or if the Lagrangian remainder is not a subset of the maximum

linearization errors £ ¢ L (see (12)).

the fact that one is particularly interested in a specific domain
of investigation around the equilibrium point. We denote the
domain of investigation by G C R", which we partition into

partition(G, P) = UL_B;, o =[[,_,Ps. (13)

where B; CR", i€ {1 ... [[;_, P} are the resulting grid
cells, and P € N” is the vector specifying the partitioning
size in each dimension, with the subscript k denoting the
k-th element of the vector P.

Following the discretization of G, each grid cell is selected
as the initial set for the reachability algorithm. The cell
is formally proven to belong to the stability region of the
equilibrium point if the resulting reachable set of states is
a subset of the target region, i.e 3t : R(t) C 7,. During
the implementation of our algorithm, we have found that
a recursive partitioning of the grid, starting with a large
cell size is more efficient in terms of computational time
than the discretization of the domain of investigation directly
with a fixed P. This is because a recursive partitioning
with different sizes allows one to rapidly explore large areas
around 7, and if these areas converge to the equilibrium,
one does not need to re-examine them.

Step @ Aggregation of results: Following the examination
of all cells, the stability region is defined by the union of cells

formally proven to converge to 7, that is

S(s) i—1B; © S°(xs),

= U
(14)
s.t:  3t: reach(B;,t) C T,.

The overall procedure to obtain the stability region is
summarized in Algorithm 1 and Algorithm 2, which outlines
the computation of reachable sets and the estimation of
the ROA, respectively. Six parameters are passed to the
algorithm by the user: the stable equilibrium point x4, the
domain of investigation G, the target set enlargement factor
A, the partitioning size of the grid P, the time increment r,
and the maximum linearization errors L.

IV. RESULTS

We demonstrate the applicability of our proposed algo-
rithm on various benchmark examples. All computations are
performed in MATLAB2014b on a standard computer. Our
algorithm computes forward reachable sets using the CORA
toolbox [29]. Our results are compared with other well-
established tools. Namely, we consider the level set (LST)
[30] and the SMRSOFT [31] toolboxes, which compute the
ROA using alternatives techniques.

In particular, LST computes the backward reachable set of
a target set enclosing an equilibrium point using the viscosity
solution of a time-dependant HJI PDE, while SMRSOFT
estimates the stability region by maximizing the LF sub-level



set using SOS programming. In this paper, the LF V(z) is
usually chosen to be quadratic in the form of

V(z) =z Mz. (15)

Here M € R™" is a real symmetric matrix ob-
tained by solving the continuous Lyapunov equation
ATM + MA + Q =0, where Q is chosen to be the identity
matrix, and A is the system matrix of the linearized system
at xs. Note that we are only using quadratic LFs.

A. Two-Dimensional Examples

First, we consider the Van-der-Pol oscillator

Ty = —I,
. 2 (16)
To = —xo(1 — x7) + 21.
The system has a stable equilibrium point at the origin, the
domain of investigation is defined by the multidimensional
interval G := [—2.5,2.5] x [—2,2], where the operator X
denotes the Cartesian product, and the chosen LF is V(z) =
1.522 —z1x9+23 (only needed in SMRSOFT). The estimated
ROA is shown in Fig. 3. The regions are obtained using
our proposed algorithm, LST, and SMRSOFT. The gray
areas show the cells attracted by the equilibrium, following
the recursive partitioning of the grid. Note that additional
partitioning takes place when examining areas far away
from the equilibrium point (target set). It can be seen that
the estimate of the stability region using the Lyapunov-
based approach is relatively conservative compared to both

regions obtained by forward/backward reachable sets, and it
is slightly more accurate using LST.
Next, we examine the following example from [32]:

&=—-2z4y+a>+y°,

17
§=—x—y+ 2y {17

The system has a stable equilibrium point at the origin.
Here, the domain of investigation is G := [—2,2] x [—2,2].
The stability region is provided in Fig. 4, where it can
be seen that both forward/backward reachability algorithms
still provide larger estimates of the ROA compared to the
ellipsoid associated with the sub-level set of the chosen LF
V(z) =5/1823 — 1/9z 29 + 4/923.

Finally, we examine the single-machine-infinite-bus
(SMIB) system. It is a benchmark example frequently used
for analysis of power systems. The system is modelled by

6 =w,
o1 , (18)
w= E(Pm — P.sin(d) — Dw),

where the state variables ¢ and w correspond to the generator
angle and its rotational speed. The meaning and values of the
constant parameters H, P,, P,,, and D can be obtained from
[33, Ch. 12]. The equilibrium point is z; = [0.835,0], the
domain of investigation is G := [—0.5,2.5] x [—3, 3], and
the chosen LF is V(z) = 3.8542% +0.313z1 75 + 0.14223 +
0.019z5. The ROA is illustrated in Fig. 5, where both reach-

Algorithm 1 reach(R(0),7,,...)

Require: The initial set R(0), the target set 7, the time
increment r, the stability region S, and the maximum
linearization errors £

Ensure: isConverging

1: Initialization: k = 0, t;, = 0, and 73, = [tk, tx+1]

2: isConverging = true
3. repeat

4 T = center(R (7))
s Alty), F(@r) <2 taylor(f(x))

6: Compute the reachable set R(7;) acc. to (8)
7 L(11) + R(7x) acc. to [9, Ch.3]

> Local linearization point

acc. to (12)
8 if L(ry) ¢ L then
9: isConverging = false
10: else
11 Compute R,(r) acc. to [9, Theorem 3.1]
12: R(ter1) 2 eATTR(t) & R,y (r)
13: if R(tx4+1) € S then
14: isConverging = false
15: end if
16: Set tx41 =1tk + 7, k:=k+1 > next iteration
17: end if

18: until — isConverging > Abort computation acc. to (12)

19: if R(tx—1) C S then
20: isConverging = true
21: end if

Algorithm 2 Estimate(z,,G,...)

Require: The stable equilibrium point x4, the size of the
grid P, the investigation domain G, and the enlargement
factor .

Ensure: S(x;)

1: Initialization: [ =1, §; = {0}, and o =[] _, P,

2 7, % (g, 7

3: repeat

& R(0) e @ enlarge(T,, \) (see (11))

5: isConverging < reach(R(0),7,,...)

6: if isConverging then

7: Ty < R(0)

8: end if

9: until — isConverging

10: Ui_; B il partition(G, P)

11: fori=1... 0 do

12: if B; C S then

13: Break > Cell already belongs to S(z)
14: else

15: isConverging < reach(B;, 7,, S,...)
16: if isConverging then

17: S« B,l=1+1

18: end if

19: end if

0 S(as) 2P UL, S,
21: end for

> Stability region




ability algorithms significantly outperform the Lyapunov-
based method in terms of accuracy. Here, additional con-
servatism can be observed by the estimate of the sub-level
set of the LF, due the fact that SMRSOFT can only work
with systems with a polynomial vector field; thus, important
system information was lost during the polynomialization of
the nonlinear system. This step is not required using our
algorithm as it fully considers the system nonlinearities.

B. High-Dimensional System

The proposed algorithm also works for higher dimensions.
The first example is a 3-dimensional system with a polyno-
mial vector from [34]:

&y = —2,
Ty = —x3, 19)
3.03 = =1 — 21132 — I3 +:17:i’

The system has a stable equilibrium point at the origin, the
chosen domain of investigation is G := [—1,1] x [—2,2] x
[—2,2], and the stability region is provided in Fig. 6. In
this example, it is clear that the accuracy of the stability
region is better using our algorithm compared to backward
reachability computations. Note that we could not visualize
the estimate of the ROA using the sub-level set of the LF
due to some unknown problems with the toolbox SMRSOFT,
although numerous LFs were examined.

The final example is a 4-dimensional non-polynomial
system. Here we consider the inverted pendulum on a moving

cart governed by the differential equations
(e 4+ myp)E = u + myh cos() — m,162 sin(6), 20)
10 — i cos(#) = gsin(6),

where m., m,, are the masses of the cart and the pendulum,
respectively, [ is the length of the pendulum, g is the
gravitational acceleration, and u is the force applied to the
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Fig. 3.  Estimation of the stability region of (16) using our proposed

algorithm (gray areas), LST (red-solid contour), and SMRSOFT (black-
dotted ellipsoid). The equilibrium point is located at the origin.

cart. The state variables are the cart position z, its velocity
&, the pendulum angle 6, and its rotational speed 0. The
system is controlled using a linear-quadratic regulator (LQR)
to stabilize the pendulum in the upright position 6 = 0.

In this example, we would like to identify the critical
pendulum angle from which the LQR would manage to
bring the pendulum to equilibrium. Based on the practical
constraints of the chosen setup, the domain of investigation
can be chosen as G := [—0.5,0.5] x [-1,1] X [-7/2,7/2] X
[—2, 2]. Fig. 7 shows a projection of the ROA obtained using
our reachability algorithm, which can be easily verified either
practically or using numerical simulations at the boundaries
of the estimated stability region. We could not visualize the
ROA using LST, as the algorithm exceeded the maximum
associated memory (16GB) of our machine at t = 157 s; thus,
we had to abort the computation in MATLAB. Additionally,
similar to the 3-D example, we did not manage to obtain an
estimate of the ROA using SMRSOFT, although numerous
LFs were examined.

C. Discussion

It is shown in Fig. 3 to Fig. 6 that both reachability
algorithms provide fairly accurate and identical estimates
of the stability region compared to the conservative ROA
estimated using the sub-level set of the LF. The computa-
tional time required to estimate the ROA for each example
using our algorithm is listed in Table I. It can be seen
that our reachability algorithm clearly scales moderately;
however, the associated memory requirements grew rapidly
for backward reachable computations as seen in the 4-D
example (20). This is due the fact that the computation of
backward reachable sets requires a continuous partitioning
of the grid, in order to find the viscosity solution of the HJI-
PDE formulation, i.e. exponential complexity with respect to
the number of state variables. Although our algorithm suffers
from an exponential complexity as well, this complexity is
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using the LF sub-level Estimated ROA using

set (black ellipsoid) for\fvard reachable sets
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x
Fig. 4.  Estimation of the stability region of (17) using our proposed

algorithm (gray areas), LST (red-solid contour), and SMRSOFT (black-
dotted ellipsoid). The equilibrium point is located at the origin.
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Fig. 5. Estimation of the stability region of (18) using our proposed
algorithm (gray areas), LST (red-solid contour), and SMRSOFT (black-
dotted ellipsoid). The equilibrium point is located at x5 = [0.835,0]7.

only related to the partitioning of the investigation domain. In
other words, only the number of cells to be examined grows
exponentially with the system dimensions, i.e. smaller base
for the computational complexity. Note that the computation
of forward reachable sets using our algorithm has a polyno-
mial complexity O(n®) with respect to the number of state
variables.

V. CONCLUSION

We present an algorithm based on reachability analysis to
estimate provable stability regions of an equilibrium point
for nonlinear systems. Our results are compared to well-
established techniques in this area, namely the computation
of backward reachable sets starting from a target region using
the viscosity solution of a time-dependant HJI PDE, and the
optimization of the LF sub-level set using SOS programming.
Note that the intention of the presented comparison is not to
replace Lyapunov-based techniques or backward reachability
computations, but rather to complement them with a more

Estimated ROA using
backward reachable
set (red area)

£0 g 0
-1 T Estimated ROA using
forward reachable set
(union of gray boxes)
-2 : ! -2 : !
-1 0 1 -1 0 1
T Z2

Fig. 6. Projection of the estimation of the ROA of (19) using our proposed
algorithm (gray areas), LST (red area with a dotted stroke). The equilibrium
point is located at the origin.

TABLE I
COMPARISON OF THE CPU TIME.

Computational time

Model
CORA [29] SMRSOFT [31] LST [30]
Van-der-Pol 373.27s 2.63s 476.71s
2-D example 72.84s 5.79s 62.39s
SMIB 382.71s 7.01s 97.58s
3-D example 428.3s unknown 687.07s
Pendulum 571.91s unknown unknown

rigorous stability analysis of nonlinear systems. Each tech-
nique has its own share of advantages and disadvantages.
For example the Lyapunov approach is superior in terms of
CPU time for low-dimensional systems; however it provides
a conservative ROA. On the contrary, backward reachability
computations provide accurate estimates of the stability
region, but the associated memory requirements grow rapidly
with the system dimension. Furthermore, it is not a formal
method, i.e. it only provides an accurate estimation rather
than a provable stability region.

Our proposed approach provides accurate, provable es-
timates of the ROA and scales moderately with system
dimensions. More importantly, the algorithm is not based
on Lyapunov stability theory, i.e. it does not use or require
the existence of a LF in order to provide a provable ROA.
Additionally, the approach is capable of dealing with gen-
eral non-polynomial systems without redefining them as a
polynomial vector.

In the future, we would like to investigate the possibilities
of unifying the aforementioned techniques under one frame-
work which only exploits their advantages. Furthermore, to
improve accuracy of the estimated ROA, we plan to use
polynomial zonotopes, introduced in our previous work [35],

2r
Estimated ROA using
forward reachable sets
1k (union of gray areas)
2o
3
1+
-2

-1 0 1
0 [rad]

Fig. 7. Projection of the estimation of the ROA of (20) using our proposed
algorithm (gray areas). The equilibrium point is located at the origin.



as set representation for forward reachability computations.
Polynomial zonotopes allow one to select larger initial sets,
thus reducing the size of the partitioned grid, which in
return would substantially reduce the overall computational
costs associated with our estimation algorithm. Finally, we
intend to combine the proposed approach with a composi-
tional reachability algorithm for transient stability analysis
of power systems [36]. This allows one to compute provable
stability margins, which are of great importance to transmis-
sion system operators to dynamically assess security of a
transmission network [33].
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