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Abstract - The paper presents a new and different approach to 
the design and realisation of Digital Signal Processing @SP) 
systems by utilising Finite State Machines (FSM). The DSP 
system is modelled by mapping all its potential states into an 
FSM, whose complexity is usually very high. The FSM mirrors 
the complete functionality of the system and thus describes its 
behaviour in full detail. Examples for FSMs of first and second 
order digital recursive filters are provided and the current 
version of the software simulating the FSM corresponding to 
any linear time-invariant DSP system is described. The potential 
of this approach including state reduction techniques as well as 
the inclusion of non-linear DSP systems is also outlined, and 
further future research intentions are briefly explored. 

I. INTRODUCTION 
Many of the current designs of DSP systems such as 

FIR/IIR digital filters and Fast-Fourier-transformers (FFT) are 
based on the translation of a signal processing algorithm into a 
hardware structure relying heavily on multipliers and adders. 
The advantage of this traditional approach is a relatively 
straightforward transformation from algorithm to hardware. 
However, its drawbacks are: 

The structure of the hardware is usually highly irregular. 
Many computations are performed repeatedly while the 
circuit is in operation, effectively reducing throughput. 
If all possible computations were performed prior to the 
transformation into hardware, it would obviously 
function much faster. 
Due to the complexity of the hardware it is often very 
difficult to fully simulate and assess its run-time behavi- 
our; hence the danger of possible unwanted limit cycle 
oscillations. Such effects often make it difficult or even 
impossible for the designer to fully predict the output of 
the circuit for any given situation. 

The solution we DroDose to many of the problems 
encountered in the traditionai design cycle-is the us; of finite 
state machines. Here, all possible states of the DSP system are 
first mapped into an FSM. This FSM is then examined for the 
effects of finite word length arithmetic, quantization errors and 
limit cycle oscillations. These effects are represented either by 
single states or whole groups of states. In a second step, 
depending on the requirements of the specific application, dupli- 
cate, redundant, unwanted and possibly erroneous states are 
removed algorithmically by employing reduction techniques. 
The third step is the transformation of the resulting minimum 
complexity finite state machine into a hardware circuit. 

Germany 

As can be seen from this cursory description, the FSM 
for non-mvial DSP-systems has a large but nevertheless finite 
number of states. In principle, each state as well as each state- 
to-state transition and its corresponding effect upon the output 
may be examined. The inputs and the outputs of the FSM are 
elements of finite sets (of numbers). The state transition 
mapping and the output mapping are defined over these finite 
sets. The mappings are operations of infinite accuracy and, 
consequently, free of all errors. By modifymg the state machine 
it is possible to replace states that would cause the system to fad 
with “adjacent” states that do not cause erroneous system 
behaviour. The penalty paid is a slight general decrease in the 
systems’s overall signal to noise ratio. Limit cycle oscillations, 
for example, can be detected using well-known graph search 
techniques, but, of course, may occasionally be too inefficient 
to be used in practice. Feeding the simulation output into an 
acceptor FSM could also give hints about the Occurence of 
cycles. Therefore, under certain conditions, fully predictable 
behaviour can be guaranteed. Even though the final hardware 
may use more chip real estate when designed using an FSM 
model, its structure is very regular and erroneous outputs are 
much less likely. This is analogous to many computer 
programs, where storage efficiency achieved via algorithmic 
complexity can be sacrificed for speed and program safety. 

In spite of the fact that VLSI technology may one day 
provide densities that allow for the one-to-one implementation 
of the most complex state machine, current technology is 
certainly not advanced enough to realise a state machine for a 
second-order 16-bit IIR filter, which would require the 
implementation of 232 states. Obviously for this sheer number 
of states, the introduction of additional logic such as adders into 
the FSM design is inevitable in order to reduce the complexity 
(see below). Although in this paper we are dealing only with 
recursive filters, the approach may easily be extendend to any 
linear or non-linear DSP system with single-input single-output 
as well as multiple-input multiple-output [ 11. Particularly 
interesting is the realisation of an FFT, which may be annotated 
as an IIR filter with complex coefficients by using Goertzel’s 
algorithm [2]. 

II. PRELIMINARIES: FINITE STATE MACHINES 
A finite state machine according to the Mealy model [ 11 

is a mathematical model of a sequential system. It comprises a 
finite set of input values U (in our case this is the set of values 
the input signal can assume), a finite set of output values G (the 
output signal), a finite state set S and two mappings: the next 
state mapping f and the output mapping g. The latter are defined 
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as: s(n + 1) = f[s(n), u(n)] and g(n) = g[s(n), u(n)], where u(n) 
E U, g(n) E G and s(n) E S are the input, output and present 
state of the system at the n* clock cycle. The mapping f maps the 
present state and the input into the next state, while the mapping 
g produces the present output from the present state and present 
input. Several standard machines may be designed which are 
simple and easily implemented, while more complex FSM’s may 
be realised by composition of finite state submachines 
(independent or interdependent). 

111. A SIMPLE EXAMPLE: FIRST ORDER FILTER 
An FSM may simulate a finite DSP system in which the 

output at any clock instant is a function of the past and present 
values of the inputs and machine states. When the continuous 
algebraic equation description of the system is given, the 
approach is to evaluate the system output for all possible finite 
inputs and system states. The calculated output will not be in the 
same finite set as the input and the current state; therefore, some 
form of approximation is necessary. However, the error of the 
system’s output values will always be within fo.5 LSB. 
Consider a first-order all-pole digital filter governed by the 
following difference equation: 

y(n) = K,y(r, - 1) + x(n) 

where the present output y(n) is a function of the past output 
y(n - 1) and the present input x(n). If we compare this simple 
difference equation with the definition of the FSM above then we 
get the corresponding FSM after the following steps: 

1. Choose the word length of y(n) and x(n). 
2. Define the quantisation method (roundoff, truncation, 

saturation). 
3. Assign to each output quantisation level y(n) a member of 

the state set S and to each input quantisation level X(n) a 
member of the input set U of the machine. 

The first-order filter may then be represented as a finite state 
machine and the next state may be obtained by quantising the 
infinite accuracy computation result of the difference equation 

Y(n) = QIKIRn - 1) + z(n)l 

where Q denotes the quantisation operation. If the coefficient K, 
= 0.55, the input x(n) I 0 (zero input sequence) and the output is 
represented in a 3-bit word, then the state table may be compiled 
as shown in Table 1: 

1.65 
-4 -2.2 -2 
-3 - 1.65 -2 
-2 -1 .1  -1 

I -1 -1 I 
Table 1: FSM for first-order %bit system 

Note that the last four enmes for J(n - 1) define all possible 
negative values. The output error (the difference between the 
output y(n) of the infinite accuracy filter and J(n)) is at most 
M.5 LSB. In this simple example, the outputs are no different 
from those that would have been obtained from the arithmetic 

realisation. However, in a system containing more than one 
multiplier, the results obtained using the above method would be 
closer to the output of an infinite precision filter. It can be shown 
that an nth order IIR filter may be represented as an n- 
dimensional FSM [l]. Before we proceed to the reduction 
process and the implementation of a real world filter example, we 
briefly explore the representation of a second order system. Let 
us assume the following second-order all-pole IIR filter: 

y(n) = 0.7y(n-1) - 0.5y(n-2) + x(n). 

Then, for zero input, the state table for a 2-bit system would be 
as follows: 

%n - 1) 
0 
1 

-2 
-1 

0 
1 
-2 
-1 

0 
1 
-2 
-1 

0 
1 
-2 
- 1  

- 
Y(n - 2) 
0 
0 
0 
0 

1 
1 
1 
1 

-2 
-2 
-2 
-2 

-1 
-1 
-1 
-1  

- Y p  
0.7 
-1.4 
-0.7 

-0.5 
0.2 
-1.9 
- 1 . 3  

1 .o 
1 . 7  
-0.4 
0.3 

0.5 
1.2 
-0.9 
-0.2 

- 
Y t )  

1 
-1 
-1 

0 
0 
-2 
-1 

1 
2 
0 
0 

1 
1 
-1 
0 - 

Table 2: FSM for second order 2-bit FSM 

It is clear that any input sequence other than zero would have to 
be added to the output y(n), because the law of superposition 
applies. 

IV. STATE AND COMPLEXITY REDUCTION 
We consider two different steps for the reduction of the 

original FSM: State Reduction (SR) which aims to minimise the 
total number of states thereby changing the behaviour of the 
original FSM (with all states present) and Complexity Reduction 
(CR) which reduces the amount of logic needed to realize the 
state-reduced FSM. In the first step of SR, the original FSM is 
searched for erroneous states such as those caused by over or 
underflow. Further erroneous conditions are limit cycle 
oscillations although, at this early stage, they are usually diffkult 
to find and not relevant because the hardware circuit will be 
based upon the machine generated by the CR step following SR. 
Erroneous states found during SR may be replaced with suitably 
chosen adjacent states or state groups. The state reduction 
techniques currently employed for the FSM model are the 
removal of all duplicate states and the replacement of all 
underflow/overflow states (using saturation arithmetic). 

Appropriate further techniques are currently under 
development and are based upon statistical methods, using three 
separate parameters to obtain a suitable measure of the relative 
importance of each particular state in the FSM. Using either a 
first or second order Markovian process, a probability factor Pi, 
a complexity factor Ci and an information factor Ii are 
combined to form a vector which is used to process the replete 
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state machine and to produce a relevance quantiry (RQ), which 
is an objective measure of the importance of a state to the 
function of the resultant FSM. A threshold is then set so that 
states exhibiting values of RQ below the prescribed value are 
omitted by reassigning the transitions leading to them. Issues 
such as the frequency of the occurence of a state, the probability 
of undertaking a particular state transition and the path in the state 
transition graph which lead to a state transition are all 
incorporated in the computation of the RQ factor. It is envisaged 
that eventually, together with the detection of limit cycle 
oscillation states, the above reduction techniques will be fully 
automated within the FSiM simulator program (see below), thus 
providing a fully automatic environment to the user to omit states 
and to synthesize the corresponding performance of the FSM 
model. 

The second step in the reduction process is complexity 
reduction: The machine is decomposed into suitable submachines 
that may or may not be interdependent. Here, known 
decompostion techniques from logic synthesis and logic testing 
[3; 41 may be used. An example realisation for an 8-bit IR filter 
may look as shown in fig. 1: The submachines M1 ... M255 each 
realize an impulse response for input values of 1...255. All 
outputs of the 255 machines are added to yield the output value 
of the filter. In principle, M1 ... M255 are structurally identical, 
i.e. are multiples of each other. This does not, however, apply 
when cutoff effects in the vicinity of the end of the interval (0 or 
255) become critical. 

Inpu $ET+ 
M255 

Fig. 1: A sample realisation of an LTI-IIR filter 

Depending upon the actual filter coefficients, the machines 
handling input values near the limit of the range may be totally 
different from those in or around the centre. It is obvious that 
machines that are multiples of each other may easily be integrated 
into a low number of scalable machines, i.e. a large area of the 
dynamic range can be mapped into a few FSM's. Also, the 
scaling is not accomplished by a multiplier but by a number of 
template machines; which leads to a very high precision, 
particularly if the wordlength of the adder is sufficiently long. 

V. THE SIMULATOR PACKAGE FSiM 
As mentioned above, the state models of FSMs modelling 

non-trivial DSP systems may become very complex; hence they 
are rather intractable to compile and to evaluate by hand. In order 
to automate the design cycle (from FSM description to a 
hardware description language) a comprehensive software tool is 
being developed. Currently, a rudimentary package called FSiM 
has been realised, which provides key functions for FSM 
simulations. This package takes the mathematical specification of 
the FSM as the input and produces a complete description of the 
behaviour of the FSM. Apart from the specification of the DSP- 
system the only additional information that need be provided is 
the wordlength of the target system and its rounding mode. 

The simulation is normally based upon a unit impulse sequence 
but an arbitrary input may also form the basis for the simulation. 
A typical FSiM input file is shown in fig. 2, for a non-canonic 
second-order Butterworth low-pass filter using 16-bit input data 
and coefficient wordlengths together with positive and negative 
saturation arithmetic modes. State variables on the right hand side 
of an equation refer to their value during the previous cycle. 

OUTPUT Y; 
INPUT X; 
STATE = (Xn-1, Xn-2, Yn-1, Yn-2); 

Y = X + 2 * Xn-1 + Xn-2 + 

Yn 2 = Yn-1; 
YnIl  = Y; 
Xn 2 = Xn-1; 
x n z l  = X; 

WIDTH = 16; 
ROUND = saturate; 

1.142878384 * Yn-1 - 0.4124832098 * Yn-2; 

Fig. 2: Example of an FSiM input file 

In this input file multiple inputloutput systems may be defined 
and the order of the system is not limited. In the current version, 
the output of the simulator is a table of all states traversed within 
the FSM for a given input sequence. Moreover, all state 
transitions and erroneous conditions due to overflow and 
underflow are output (an excerpt from a complete listing is 
shown in the next section). 

The simulator is written in C and it runs under UNIX. At 
present, only linear time invariant systems governed by 
difference equations such as the ones shown above may be 
simulated. However, non-linear functions such as sine and 
exponentials may be used to specify non-linear systems of a 
limited scope. In the future, the simulator will provide the ability 
to evaluate polynomial expressions and functions defined over a 
limited interval. It is also planned to include FSMs that change 
their structure over time by introducing conditional expressions 
into the FSM description. The FSM may then depend on time 
and, for example, upon the availability of a certain data value. 

As state reduction techniques are developed they will also 
be included in the simulator. The simulator version currently 
being worked on will accept complex coefficients in the input 
description so as to make the realisation of FFTs via the FSM 
mechanism possible. It is also envisaged to incorporate facilities 
to graphically display the distributions of states and state 
transitions. This would give the user an intuitive feel for possible 
interaction with the state removal techniques. In the case of n- 
dimensional state machines, the system would provide the 
appropriate projections in two or three dimensions. 

The detection of limit cycle oscillations essentially 
consists of searching cycles in a graph, a problem which is 
exponential in the number of states of the machine. Normally, 
however, self-sustained limit cycle oscillations do not exceed a 
certain cycle path length and the search may be stopped when a 
certain path length i s  reached. It is envisaged that provided a limit 
cycle oscillation path has been detected, the path will be broken 
and one of the states in the cycle replaced with another state, 
damping the oscillation to zero. 
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W. FSiM AND AN ACTUAL IIR-FILTER FSM DESIGN 
We now consider an IIR filter example of the Butterworth type, 
given by the following difference equation: 

yn = xn + 2xn-1+ xn-2 + 1.142878384 yn-1 - 0.4124832098 yn-2 

(subscripts are used here to improve readability). FSiM takes 
this equation as a complete description of an FSM (see fig. 2) 
and produces the full state table, together with a listing of all state 
transitions. Fig. 3 is an excerpt from the whole listing and shows 
the states encountered after a unit-impulse is applied to the IIR 
filter described by the above equation. Note that the impulse 
response is finite due to rounding effects. 

The research aim with respect to FSiM is to decrease the 
amount of computation resources necessary to tabulate the whole 
automaton. A block-diagram orientated graphical user interface 
within the framework of the CADiSP system [5] is also being 
developed. It has been designed to provide the user not only with 
a display of the output signal but also with a means of reducing 
states stepwise and interactively to simulate the corresponding 
performance. The user may eventually go back and forth between 
the different reduction levels to obtain an immediate feedback on 
the corresponding system performance. 

n x  Y (~n-29 Yn-1, xn-29 Xn-1) 

0 
1 
2 
3 
4 
5 
6 
I 
8 
9 

1 0  
11 
1 2  
13 
14  
1 5  
1 6  
11 
18 
1 9  
20 
2 1  
22 
23 
24 
25 
2 6  
2 1  
28 

32167 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

327 6 1  
32167 
3 2 1  6 1  
23933 
13837 
5942 
1083 

-1213 
-1833 
-1595 
1067 
-562 
-202 

1 
84 
96 
1 5  
46 
22 
6 

-2 
-5 
-5 
- 4  
-3 
2 
-1 
0 
0 

0,32767,0,32161 
32167,32161 I 32161 I 0 

32161,32161,0,0 
32767,23933,0,0 
23933,13831,0, 0 
13831,5942,0,0 
5942,1083,0,0 
1083,-1213,0, 0 

-1213,-1833,0,0 
-1833,-1595,0,0 
-1595,-1061,0, 0 
-1067, -562,0,0 
-562,-202,0,0 

-202,1,0,0 
1,84,0,0 

84, 96,0,0 
96,15,0,0 
75,46,0,0 
46,22,0,0 
22,6,0,0 
6, -2,0,0 

-2,-5,0,0 
-5,-5,0,0 
-5, -4,0,0 
-4,-3,0,0 
-3,-2,0,0 
-2, -1,o,o 
-1,o, 0,o 

o,o,o,o 

VII. CONCLUSIONS 
Summarising the benefits of the FSM method as follows: 

Full control of the DSP-system’s behaviour through extensive 
simulation: Every state that the system may ever encounter 
may be examined for desirability. 
The system’s behaviour is fully predictible for any input si- 
gnal. 
Elimination of undesired effects by removing states and re- 
placing them with substitute states taken from the set of 
“sensible” states. 
It is well known that FSMs may be realized by combinatorial 
circuits of various technologies such as Read-Only-Memries, 
Programmable-Logic-Arrays, EPLDs or application specific 
circuits (ASICs). Therefore, the method provides the potential 
for flexible implementation and for optimizing hardware 
realizations for very high speed operation. 
Furthermore, the method lends itself to an implementation 
based on block-diagram orientated graphical user interfaces. 
Even if the system cannot be described analytically, an FSM 
may be constructed from the known input-output relationship 
(including the past history). State reduction techniques may 
then be applied as well and the effect of expunging certain 
states may be examined interactively. Depending upon the 
reduction level, the performance of the DSP system will be 
reduced but it will be realizable at lower cost. Note, however, 
that the user always keeps control of the properties of the 
system. 
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Fig. 3: States of the Butterworth filter after unit-input 
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