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Abstract: Visual servoing of constrained robots has not yet met a formal treat-
ment nor its friction compensation. This kind of robots moves slowly along the
constrained surface due to technological limitations of the camera system, therefore
important problems of friction at the joint and contact point arise. The problem
turns very complicated when parametric uncertainty on robot, camera and friction
is considered. In this paper, a new visual servoing scheme that satisfy this problem
is presented. It induces sliding modes without chattering to guarantee locally
exponential convergence of tracking errors. Simulations results are presented and
discussed. Copyright c© 2005 IFAC
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1. INTRODUCTION

It is well known that multisensor-based robot
control approaches may offer a solution to very
important and relevant, but complex, problems
in robotics. In order to achieve this sensor fusion-
based controller, a careful analysis of the dynam-
ics, sensors behavior, and tasks are required. One
of such tasks, is the image-based force-position
control of robots. Furthermore, since parameters
are in practice uncertain, the control must be
robust to all parameters of the system. This sort
of control laws are able to interact under changing
environment and deal with uncertainties of its

1 Email: (edean,lgarcia)@cinvestav.mx
2 Partially supported by CONACYT project 39727-Y. On
a sabbatical leave from Mechatronics Division, CINVES-
TAV. Email: vicente.parra@ciateq.mx
3 Email: eromero@tunku.uady.mx

dynamic models without the explicit intervention
of humans. Concretely, the desired task is that the
robot end effector tracks a visual trajectory along
the surface of an object, and at the same time,
control the applied force, see Figure 1.
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Figure 1. Robot-Force-Vision System.



On the other hand, joint friction and contact
friction are quite important to compensate in
any practical application. Therefore, we consider
for the joint friction the LuGre model, which
reproduces a typical motion regime of image-based

robotic tasks, and viscous friction at the contact
point.

1.1 Background

Good sensing abilities of relevant variables are
essential to gain higher flexibility and autonomy
of robots in an unknown working environment.
Often, either vision or force sensor are used.
Hybrid vision/force control approaches have been
reported e.g. (J. Baeten, 2000), (Xiao, 2000) and
none of them shows robustness to uncertainties,
neither robot parameters nor camera parameters.

With respect to force control, Arimoto (Arimoto,
1996) solved by first time the simultaneous control
of position and force using the full nonlinear dy-
namics subject to parametric uncertainties with-
out coordinate partitioning, based on the orthog-
onalization principle. Afterwards, several schemes
have been proposed based on the orthogonaliza-
tion principle, however these schemes have not
been extended or combined with visual servoing
beyond free motion robots.

In this paper, an adaptive controller driven by im-
age and contact force errors to solve the problem
posed above is proposed. The system guarantees
exponential tracking of position and force trajec-
tories subject to parametric uncertainties. This
scheme delivers a smooth controller and presents
formal stability proofs. Simulations allows to vi-
sualize the expected closed loop performance pre-
dicted by the theory.

2. NONLINEAR ROBOT DYNAMICS

The constrained robot dynamics arises when its
end effector is in contact with infinitely rigid
surface. Considering the generalized position q ∈
Rn and velocity coordinates q̇ ∈ Rn, this system
is (Arimoto, 1996)

H(q)q̈ + C(q, q̇)q̇ + g(q) = τ + JT
ϕ+(q)λ − F (q̇, ψ)

− JT (q)BtJ(q)q̇ (1)

ϕ(q) = 0 (2)

where Bt ∈ Rn×n
+ , is the viscous friction matrix

and possibly not a diagonal matrix, JT (q)BtJ(q)q̇
represents the tangencial viscous friction in the
contact point, H(q) ∈ Rn×n stands for the inertia
matrix; C(q, q̇)q̇ ∈ Rn stands for the vector of
centripetal and Coriolis torques; g(q) ∈ Rn is the
vector of gravitational torques, F (q̇, ψ) is the joint

dynamic friction 4 , Jϕ(q) is constrained jacobian
of the rigid and frictionless constraint surface
ϕ(q) = 0, and λ is the constrained Lagrangian
or contact force.

Adding and subtracting to (1) the linear parame-
trizationH(q)q̈r+C(q, q̇)q̇r+g(q)+J

T (q)BtJ(q)q̇ =
Yrθb, where the known regressor Yb = Yb (q, q̇, q̇r, q̈r) ∈
<n×p and the unknown constant vector θb ∈ <p,
produces the open loop error equation

H(q)Ṡq = −C(q, q̇)Sq − JT (q)BtJ(q)Sq+

τ + JT
ϕ (q)λ − Yrθb (3)

with joint error surface Sq is defined as

Sq = q̇ − q̇r (4)

where q̇r stands for the nominal reference.

3. CAMERA MODEL

The static pin hole with thin lens without aberra-
tion camera model is used (S. Hutchinson, 1996).
To introduce it, consider the forward kinematics
xb = f(q), for xb ∈ <n represents the position of
robot end effector in cartesian space. Differential
kinematics relates velocities in cartesian space to
joint space velocities as follows ẋb = J(q)q̇. Ac-
cording to (S. Hutchinson, 1996), visual position
xs ∈ <2 of robot end effector in image space is
given by xs = αR (θ) xb + β where α is the scale
factor 5 , R (θ) ∈ SO(3), β ∈ <2 that depends
on intrinsic and extrinsic camera parameters. The
differential kinematics of camera model is then
ẋs = αR (θ) ẋb. Using these relationships, we have
an equation that relates ẋs ∈ <2 and q̇ ∈ <2 as
follows:

ẋs = αR (θ) J(q)q̇ =⇒ q̇ = JRinvẋs (5)

whit JRinv = J(q)−1R (θ)
−1
α−1. This relation is

useful to design the nominal reference.

4. VISUAL-FORCE EXTENDED ERROR

Since ϕ(q) = 0∀t, then its time derivative yields
d
dtϕ (q) = ∂ϕ(q)

∂q
dq
dt ≡ Jϕ (q) q̇ = 0, this means

that Jϕ (q) is orthogonal to q̇. That is, q̇ belongs
to the orthogonal projection matrix Q of Jϕ (q)
(Arimoto, 1996)

Q = I −
Jϕ

‖Jϕ (x)‖
2 J

T
ϕ (6)

As we can see, Q spans the tangent plane at the
contact point, therefore, Jϕ and Q are orthogonal
complements. In other words, Qq̇ = q̇ → QQq̇ =

4 For a clear exposition, firstly, F (q̇, ψ) will be considered
zero, however in Section 7 it will be treated.
5 Without loss of generality, α can be considered as a
scalar matrix 2× 2.



Qq̇ ≡ q̇, naturally, QJT
ϕ = 0. These properties are

fundamental to establish the visual orthogonaliza-

tion principle. Now, let q̇r, in (4), be constructed
in terms of orthogonal nominal references of ve-
locity q̇s and force q̇f as follows

q̇r = q̇s + q̇f ≡ QJRinvẋr + βJT
ϕ q̇rf (7)

Furthermore, let the nominal visual reference ẋr

be

ẋr = ẋsd − α∆xs + Ssd − γs

∫ t

t0

sign (Ssδ) (8)

where ẋsd stands for desired visual velocity tra-
jectory and ∆xs = xs − xsd is the visual position
error, and Ss = ∆ẋs + α∆xs, Ssd = Ss(t0)e

−κst,
Ssδ = Ss − Ssd, where ∆ẋs = ẋs − ẋsd, κs > 0,
and γs ∈ Rn×n. Now let us design the nominal

force reference as follows

q̇rf = ∆F − SdF + γF

∫ t

t0

sign (SFδ) (9)

where SF = ∆F, SFd = SF (t0)e
−κF t, SFδ = SF −

SFd, with ∆F =
∫ t

t0
∆λ (ζ) dζ, ∆λ = λ − λd,

and λd is the desired contact force, κF > 0,
γF ∈ Rn×n

+ .

Using equations (7) into (4), we obtain the follow-
ing orthogonalized joint error surface 6

Sq = q̇ − q̇r ≡ Qq̇ − q̇r

= QJRinvẋs −QJRinvẋr − βJT
ϕ q̇rf

= QJRinvSvs − βJT
ϕ SvF (10)

with SvF = SFδ + γF

∫ t

t0
sign(SFδ) and Svs =

Ssδ + γs

∫ t

t0
sign (Ssδ).

Remark 1. The above definition assumes exact
knowledge of JRinv, however, in practice it is a
very restricted assumption. Therefore, we need to
design uncertain manifold Sq taking into consid-
eration uncertainty of Jq, R(θ), α.

To this end, consider

̂̇qr = QĴRinvẋr + βJT
ϕ q̇rf (11)

with ĴRinv an estimated of JRinv , such as rank
J−1 (q) and R−1

α (θ) are full rank ∀q ∈ Ω, where
the robot workspace free of singularities is defined
by Ω = {q|rank (J (q)) = n}, and ∀θ ∈ <. Thus,
substituting (11) into (4) we have the uncalibrated

joint error surface

Ŝq = q̇ − ̂̇qr = QJRinvẋs −QĴRinvẋr − βJT
ϕ q̇rf

(12)

where Ŝq is available because q̇ and ̂̇qr are avail-
able.

6 Notice that Sq is composed of two orthogonal comple-
ments, QJRinvSvs depending on image coordinate error,
and βJT

ϕ SvF depending of integral of contact force errors.

5. OPEN LOOP ERROR EQUATION

Using (11), the uncertain parametrization is

H(q) ̂̈qr +C(q, q̇) ̂̇qr +g(q)+JT (q)BtJ(q) ̂̇qr = Yr θ̂b

where q̈r = f(ẍr, q̈fr), and ẍr = ẍsd − α∆ẋs +

Ṡsd−γssign(Ssδ), q̈rf = ∆Ḟ−ṠdF +γF sign (SFδ),
which produces a discontinuous q̈r.

To avoid introducing high frequency discontinu-
ous signals, add and subtract zs = tanh(νsSsδ)
and tanh(νfSFδ) to q̈r to separate continuous and
discontinuous signals as follows

q̈r = q̈cont +Qγszs − βJT
ϕ γfzf (13)

with zs = tanh (λsSsδ) − sign (Ssδ) and zf =
tanh (λfSFδ)−sign (SFδ). This results that Ycont =
Yr (q, q̇, q̇r, q̈cont) is continuous since (q̇r, q̈cont) ∈
C1, where

̂̈qcont = QĴRinvẍcont + βJT
ϕ q̈cont+

Q̇ĴRinv ẋs + βJ̇T
ϕ q̇rf (14)

with ẍcont = ẍsd − α∆ẋs + Ṡsd + γs tanh(νsSsδ),
q̈cont = ∆Ḟ − ṠdF + γF tanh(νfSFδ). It will
become later that large νs, νf are not required in
the control law design to induce sliding modes.
Therefor the uncalibrated linear parametrization
is

H(q) ̂̈qr + C(q, q̇) ̂̇qr + g(q) + JT (q)BtJ(q) ̂̇qr =

Ycontθ̂b +H(Qγszs − βJT
ϕ γfzf ) (15)

where the last term can be seen as a disturbance.

Adding and subtracting (15) to (1) we obtain
finally the open loop error equation.

H(q)̂̇Sq = −C(q, q̇)Ŝq + τ + JT
ϕ (q)λ−

Ycontθb − JT (q)BtJ(q)Ŝr+

H(Qγszs − βJT
ϕ γfzf ) (16)

Now we are ready to present the main result.

6. CONTROL DESIGN

Theorem 1: Assume that initial conditions and
desired trajectories belong to Ω. Consider the
constrained robot dynamics (1), subject to para-
metric uncertainties camera, robot and tangential
contact friction, in closed loop with the following
visual adaptive force-position control law

τ = −KdŜq + Ȳcontθ̂b + JT
ϕ (q) [−λd + η∆F ] +

γFJ
T
ϕ (q)

[
tanh (µSqF ) + η

∫ t

t0

sgn (sFδ)

]
(17)

˙̂
θb = −ΓY T

contŜq (18)

where Γ ∈ Rp×p
+ , Kd ∈ Rn×n

+ , η > 0, and λd the
desired contact force. If Kd is large enough and an



error of initial conditions are small enough, with

γs ≥
∥∥∥ d

dt

{
Rα (θ)J (q)

[
Ŝq +

(
ĴRinv − JRinv

)
ẋr

]}∥∥∥

and γF ≥
∥∥∥ d

dt

[(
JϕJ

T
ϕ (q)

)−1
JϕŜq

]∥∥∥ then expo-

nential convergence of visual and force tracking
errors is guaranteed.

Proof: We prove that the closed loop dynamics
(CLD) between (17)-(18) and (1), shows bound-
edness of all system trajectories, with exponential
convergence of tracking errors. The proof is orga-
nized in three parts.

Part I. Boundedness of Closed Loop Tra-

jectories. Consider the time derivative of the
following Lyapunov candidate function

V =
1

2

[
ŜT

q H (q) Ŝq + βST
vFSvF + ∆θT

b Γ∆θb

]
,

with ∆θb = θb − θ̂, along the solutions of closed
loop dynamics (CLD) as

V̇ ≤ −Kd

∥∥∥Ŝq

∥∥∥
2

2
− ηβ ‖SvF ‖ + ‖Ŝq‖ψ

where ψ is a functional depending on the state
and error manifolds. Now if Kd, η and β are large
enough and the initial errors are small enough,
we conclude the seminegative definiteness of V̇

outside of hyperball ε0 =
{
Ŝq|V̇ ≥ 0

}
centered

at the origin, such as the following properties of
the state of closed loop system arise

Ŝq, SvF ∈ L∞ → ‖Svs‖, ‖SvF‖ ∈ L∞ (19)

Then,
(
Ssδ,

∫
sign (Ssδ)

)
∈ L∞ and since de-

sired trajectories are C2 and feedback gains are

bounded, we have that
(

̂̇qr, ̂̈qr
)
∈ L∞. The right

hand side of (16) shows that ε1 > 0 exists such
that ∥∥∥̂̇Sq

∥∥∥ ≤ ε1

This result shows only local stability of Ŝq and
̂̇Sq, now we prove that the sliding modes arises.
Adding and subtracting QJRinvẋr to (12) we
obtain

Ŝq = Q {JRinvSvs − ∆JRinv ẋr} − βJT
ϕ {SvF }

(20)

where ∆JRinv = ĴRinv − JRinv . Since Ŝq ∈ L2,
and JRinv and Q are bounded, then QJRinvSvs

is bounded and, due to ϕ (q) is smooth and lies
in the reachable robot space and SvF → 0, then

βJT
ϕ SvF → 0. Now, taking into account that ̂̇Sq

is bounded, then d
dtJRinvQSvs and d

dtβJ
T
ϕ SvF are

bounded (this is possible because J̇T
ϕ is bounded

and so Q̇ is). All this chains of conclusions proves
that there exists constants ε2 > 0 and ε3 > 0

such that
∣∣∣Ṡvs

∣∣∣ < ε2,
∣∣∣ṠvF

∣∣∣ < ε3. Now, we have

to prove that for a proper selection of feedback
gains γs and γF , we can conclude that trajec-
tories of visual position and force converges to

zero. This is possible if we can prove that sliding
modes are established for the subspace of visual
position Q and the subspace of force JT

ϕ (q). Con-
sidering that operator QJRinv spans the vector
Ŝq in its image im {QJRinv (Svs)} ≡ Sim

vs and the
operator βJT

ϕ spans the same vector in its image

im
{
βJT

ϕ (SvF )
}
≡ Sim

vF , this implies that

Ŝq = Q {JRinvSvs − ∆JRinvẋr} − βJT
ϕ {SvF }

= (Sim
vs − im {∆JRinv ẋr}) − Sim

vF (21)

where Sim
vs − im {∆JRinvẋr} and Sim

vF belongs to a
orthogonal complements, < Sim

vs −im{∆JRinvẋr},
Sim

vF >= 0. That is, we are able to analyze the
Sim

vs − im {∆JRinv ẋr} dynamics, independently of
Sim

vF , since Sim
vF belongs to the kernel of Q. This is

verified if we multiply (21) for QT ,

QT Ŝq = QTQ {JRinvSvs − ∆JRinvẋr} − βQTJT
ϕ SvF

= Sim
vs − im {∆JRinvẋr} (22)

since Q is idempotent
(
QTQ = Q

)
. It is impor-

tant to notice that if Ax = Ay for any square
nonsingular matrix A and any couple of vec-
tors x, y, then x ≡ y. Thus, the equation (22)
means that for the subspace Q, the equality Ŝq =
Q {JRinvSvs − ∆JRinv ẋr} is valid within span of
Q. Now, if we multiply Ŝq for Jϕ to obtain

JϕŜq = JϕQ {JRinvSvs − ∆JRinv ẋr} − βJϕJ
T
ϕ {SvF }

= Sim
vF (23)

Part II: Second Order Sliding Modes.

Part II.a: Sliding modes for the velocity

subspace Q. According toQT Ŝq = Q{JRinvSvs−

∆JRinvẋr}, then Ŝq ≡ JRinvSvs−∆JRinvẋr in the
subspace image of Q, however notice that Q is not
full rank, then this equality is valid locally, not
globally. In this local neighborhood, if we multiply
the equality Ŝq = Q {JRinvSvs − ∆JRinv ẋr} by
Rα (θ) J (q) 7 , we have

Rα (θ) J (q) Ŝq = Ssδ + γs

∫
sign (Ssδ)−

Rα (θ)J (q) {∆JRinv ẋr} (24)

Taking the time derivative of the above equation,
and multiply it by ST

sδ produces

ST
sδṠsδ = −γsS

T
sδsign (Ssδ)+

ST
sδ

d

dt

[
Rα (θ)J (q)

(
Ŝq + ∆JRinv ẋr

)]

≤ −µs |Ssδ| (25)

where µs = γs−ε4, and ε4 = d
dt [Rα (θ) J (q) (Ŝq+

∆JRinvẋr)]. Thus, we obtain the sliding condition
if γs > ε4, such as, µs > 0 of (25) guarantee the

sliding mode at Ssδ = 0 in a time ts = |Ssδ(t0)|
µs

.
However, notice that for any initial condition
Ssδ (t0) = 0, then ts = 0, which implies that the

7 Remember the equality: JRinv = J−1 (q)R−1 (θ)α−1.



sliding mode at Ssδ (t) = 0 is guaranteed for all
time.

Part II.b: Sliding modes for the force

subspace. Similarly, if we multiply (23) by(
JϕJ

T
ϕ (q)

)−1
, we obtain

(
JϕJ

T
ϕ (q)

)−1
JϕŜq = −βJϕJ

T
ϕ {SvF } (26)

J#
ϕ (q) Ŝq = SFδ + γF

∫
sign (SFδ)

(27)

where J#
ϕ (q) =

(
JϕJ

T
ϕ (q)

)−1
Jϕ. Derivating the

above equation and multiply for ST
Fδ lies

ST
FδṠFδ = −γF |SFδ| + ST

Fδ

d

dt

(
J#

ϕ (q) Ŝq

)
(28)

≤ −µF |SFδ| (29)

where µF = γF−ε5, and ε5 = d
dt

[(
JϕJ

T
ϕ (q)

)−1
JϕŜq

]
.

If γF > ε5, then a sliding mode at SFδ (t) = 0 is

induced in a time tf ≤ |SF δ(t0)|
µF

, but SFδ (t0) = 0.

Part III: Exponential convergence of track-

ing errors.

Part III.a: Visual tracking errors. Since a
sliding mode exists for all time at Ssδ (t) = 0,
then, we have that Ss = Ssd∀t → ∆ẋs =
−α∆xs+Ss (t0) e

−κst. This implies that the visual
tracking errors locally tends to zero exponentially
fast, this is xs → xsd, ẋs → ẋsd, implying that the
robot end-effector converges to the desired image
xsd, with given velocity ẋsd.

Part III.b: Force tracking errors. Since a
sliding mode at SFδ (t) = 0 is induced for all
time, this means ∆F = ∆F (t0) e

−κF t. Moreover,
in (V. Parra-Vega, 2003) it is showed that the
convergence of force tracking errors arises, thus
λ→ λd exponentially fast. QED.

Remark 2. We have proved that J(q(t)) is not

singular for all time, because q(t) → qd(t) ex-

ponentially, without overshoot, with desired tra-

jectories belonging to robot workspace Ω, thus

J(q(t)) → J(qd(t)) within Ω.

Remark 3. Using continuous tanh(∗) instead of

sign(∗) induces larger upper bounds ε2 and ε3 in

comparison of using sign(∗) , with the great ad-

vantage of getting ride of the harmful chattering.

In this case, to induce the second order sliding

mode, and therefore exponential convergence of

tracking errors, it suffices to tune γF and γP to a

larger value.

7. DYNAMIC FRICTION COMPENSATION

Now let us consider the dynamic friction into the
model, which represent a very realistic behaviour
when the robot is moving along a rigid surface,

in particular, driven by visual servoing. In this
case, the following LuGre (Canudas de Wit and
Astrom, 1995) dynamic friction model is very
appropiate to define the joint friction

F (q̇, ψ) = σ0z + σ1ż + σ2q̇
ż = −σ0h(q̇)z + q̇

h(q̇) =
|q̇|

α0 + α1exp−(q̇/q̇s)2

(30)

where matrix parameters σ1, σ2, σ3 are diagonal
definite matrices n×n, the state z ∈ Rn stands for
the position of the bristles, α0, α1 > 0, and q̇s >
0. This model involve a very complex dynamics
around the trivial equilibrium, for bidirectional
motion, and for very small displacements, the
forces that comes out from this model makes
impossible to reach the origin due to limit cycles
induced and the potentially unstable behavior.
Substituting (30) into (1) yields

H(q)q̈ + C(q, q̇)q̇ + J(q)TBtJ(q)q̇ + σ12q̇+

g(q) + σ0z − σ01h(q̇)z = τ + JT
ϕ (q)λ (31)

where σ01 = σ0σ1 and σ12 = σ1+σ2. Now, we need
to organize the parametrization in terms of two
regressors: H(q)ˆ̈qcont + (C(q, q̇) + J(q)TBtJ(q) +
σ12)ˆ̇qr+g(q) = YcontΘb and the virtual continuous

regressor σ01α01

α0

|q̇|tanh(λfSq)+σ0α01tanh(λfSq) =
YfΘf ,where α01 = α0 +α1, tanh(q) is the contin-
uous hyperbolic tangent function, and λf > 0.
Now, If we add and subtract the above regres-
sors to (31) yields the following open-loop error
dynamics with dynamic friction

H(q) ˆ̇Sq = −(C(q, q̇) + J(q)TBtJ(q)Ŝq + σ12)Ŝq+

τ −F − YΘ + JT
ϕ (q)λ − σ0z + σ01h(q̇)z

+H(Qγszs − βJT
ϕ γfzf ) (32)

where F = σ0z +σ0 +σ0α0
−1σ1|q̇| −σ0σ1|q̇|zαe,

σx = α01tanh(λfSq), αe = (α0 + α1exp
−(q̇/q̇b)

2

)
−1

,
Y = [Ycont, Yf ], and Θ = [ΘT

b ,Θ
T
f ]T . Finally,

consider the following control law

τ = −KdŜq + Y Θ̂b + JT
ϕ (q) [−λd + η∆F ]

+ γFJ
T
ϕ (q)

[
tanh (µSqF ) + η

∫
sgn (sFδ)

]

(33)

˙̂
Θ = −ΓY T Ŝq (34)

where Γ ∈ Rp×p
+ ,Kd ∈ Rn×n

+ , γF > 0, η > 0. We
now have the following result.

Theorem 2. Consider the constrained robot (1)
subject to parametric uncertainty on the robot,
the camera, tangential contact friction and joint
dynamic friction. Assume that initial conditions
and desired trajectories belong to Ω, y consider
the adaptive visual servoing force-position con-
troller (33)-(34). If Kd is large enough and a error
of initial conditions are small enough, and if γs ≥∥∥∥ d

dt

{
Rα (θ) J (q)

[
Ŝq +

(
ĴRinv − JRinv

)
ẋr

]}∥∥∥ and



γF ≥
∥∥∥ d

dt

[(
JϕJ

T
ϕ (q)

)−1
JϕŜq

]∥∥∥ then exponential

convergence of visual and force tracking errors is
guaranteed.

Proof.- With the very same Lyapunov function
of theorem 1, we obtain the time derivative, along
trajectories of the closed loop of (33)-(34) and (1),

as: V̇ ≤ −λmin (Kd)
∥∥∥Ŝq

∥∥∥
2

2
− ηβ ‖SvF ‖+ ‖Ŝq‖ψ−

V̇f , where V̇f = σ0S
T
r [z + σ01tanh(λfSr)] −

σ01Sr[−zh(ẋ) + α0
−1σ01|ẋ|tanh(λfSr)]. > 0, see

(Garcia-Valdovinos and Parra-Vega, 2003). From
here on, we proceed exactly as in proof of Theorem
1, details are therefore omitted. QED.

8. SIMULATIONS

Robot parameters are taken from a 2 DOF
planar robot, also the camera parameters are
from SONY DFWVL500 CCD camera. Robot pa-
rameters: Mass(6,2)kg, Length(0.4,0.3)m. Cam-
era: θ(90o), α(77772)pix/m, z(1.5)m. Friction
parameters: σ0(30000), σ1=σ2(2), α0(4), α1(0.4),
q̇s(0.01). The desired trajectories for the simula-
tion is xs = αR[xcd; ycd] + β, xcd = 0.5; ycd =
0.5 + r ∗ sin (ω ∗ t) ; r = 0.1, ω = 0.5. The contact
surface is a plane parallel to plane Y Z and over
x = 0.5.

Feedback gains are Γ = diag(1), κf = 20, γf =
3.0, η = 0.029, β = 1.0,Kd = diag(90), α =
diag(40), κs = 20, γs = diag(7.8).

9. CONCLUSIONS

A novel adaptive servo visual scheme for a con-
strained dynamical robot system is presented. The
main feature of this scheme is the ability to fuse
image coordinates and contact forces. Local ex-
ponential convergence arises for image position-
velocity and contact forces even when robot pa-
rameters, camera parameters and contact friction
are unknown. Additionally, it is proposed a com-
pensator of uncertain joint dynamical friction,
which has never treated in the literature of visual
servoing, but it is particularly important in con-
tact motion tasks, because the motion regime is
slow, with velocity reversals. Simulations confirm
the predicted stability properties.
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Figure 2. Force tracking errors indicate very fast
convergence. As we can see, without fric-
tion compensation the force tracking exhibits
overshot.
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Figure 3. Cartesian tracking error with exponen-
tial envelope. Once again, the visual tracking
presents overshots when no friction compen-
sation is available.


