MGSyn: Automatic Synthesis for Industrial Automation

Chih-Hong Cheng!-%*, Michael Geisinger?*, Harald Ruess?,
Christian Buckl?, and Alois Knoll*

1 Department of Informatics, Technische Universitit Miinchen
Boltzmannstr. 3, 85748 Garching bei Miinchen, Germany
2 fortiss GmbH, Guerickestr. 25, 80805 Miinchen, Germany

Abstract. MGSyn is a programming toolbox based on game-theoretic notions of
synthesis for generating production code in the domain of industrial automation.
Instead of painstakingly engineering sequences of relatively low-level program
code, the designer selects pre-defined hardware components together with be-
havioral interfaces from a given library, specifies a topology for the interconnec-
tion of components, and specifies the programming/synthesis problem in terms of
what needs to be achieved. Given the model and a problem specification, MGSyn
synthesizes executable C/C++ code for a concrete execution platform and an in-
teractive simulator. The synthesized code is used to control distributed industry-
standard PLCs in a FESTO modular production system.

1 Introduction

Realizing distributed process control systems with their stringent real-time and depend-
ability, in particular safety and security requirements, is a challenging problem. The
prevalent state-of-the-practice, as determined by current industrial standards including
IEC 61131-3, IEC 61804, or IEC 61499, is based on painstakingly engineering se-
quences of relatively low-level control code using standardized libraries of function
blocks. All too often this traditional style of programming leads to inefficiencies in de-
veloping and maintaining industrial production control systems, it has negative impact
on the quality and dependability of the control code itself, and it results in inflexibility
of production processes with prolongated start-up and changeover times.

We are proposing a new style of programming industrial automation plants based
on describing what needs to be achieved instead of how these plants are actually be-
ing controlled. An example of such high-level instructions is “Drill and store red work
pieces if they are facing up.” More precisely, based on capability models of hardware
components and a description of what needs to be achieved, we set up a game between
the hardware component controllers and the observable (sensor) environment, and syn-
thesize a control algorithm based on a winning strategy for the controllers. MGSyn
(Model, Game, Synthesis) is a tool for automating this high-level style of programming
industrial automation plants by, first, synthesizing code for embedded control systems
and, second, executing this code to control a distributed industrial programming logic
control systemﬂ

* The first two authors contributed equally to this work.
' MGSyn is freely available under the GPLv3 license, including a step-by-step tutorial, at
http://www.fortiss.org/formal-methods

P. Madhusudan and S.A. Seshia (Eds.): CAV 2012, LNCS 7358, pp. 65816641 2012.
(© Springer-Verlag Berlin Heidelberg 2012


http://www.fortiss.org/formal-methods

MGSyn: Automatic Synthesis for Industrial Automation 659

Concerning related work, there is an ongoing interest in program synthesis; some re-
cent works include [[12,15)1319110114]. For automation, models based on state-transition-
diagrams have previously been used and synthesis is performed on a generalized Petri
net models with input-output preservation [8I16/712]. In MGSyn, a developer provides
a high-level specification for the desired behavior and the synthesis engine automati-
cally creates a program (i.e., the state-transition-diagram) that fulfills the specification.
In addition, MGSyn includes an automated deployment of such a high-level control
program to lower-level executables.

We first illustrate the general modeling concepts of MGSyn in Section[2]. In Sec-
tion Bl we describe the deployment of executable code for our FESTO modular pro-
ductiond demonstrator depicted in Figure [l This industrial automation plant is built
from a set of rearrangeable hardware modules including processing stations, conveyer
belts, and storage facilities, similar to the ones used in large-scale production facilities.
Finally, in Section |4, we describe how the back-end synthesis engine as well as the
mapping to a concrete execution platform is implemented.

2 Modeling Industrial Automation Processes with Games

Given a description of the plant and a high-level problem specification, the two-player
game of program synthesis for industrial automation is played between Controller and
Environment. The moves of Controller correspond to (i) processing actions of the plant
and (ii) sensor triggering actions, whereas Environment’s moves determine the plant’s
sensor inputs, and hence uncertainty and non-determinism within the system. Winning
conditions of the game are specified in terms of a subset of linear temporal logic (LTL).
A particularly simple winning condition, e.g., is a set of states, which are regarded as
goals for encoding what needs to be achieved. In this case Controller wins the (reach-
ability) game if it succeeds in driving the plant towards these goals irrespective of the
moves (sensor inputs) chosen by Environment. Such a game is specified in MGSyn
from models of the hardware modules, the topology of these modules and the oper-
ational behavior for specifying Controller and Environment moves; see Section 3] for
a representative model. From these ingredients, the synthesis engine of MGSyn cre-
ates intermediate, platform independent control code, which may be validated through
platform-independent simulation. The deployment of executable code is based on a de-
scription of execution units and their interconnection.

Plant Modules. An industrial production plant is built up from hardware modules in-
cluding conveyor belts, robot arms, or rotary plates. The key is to specify each of these
components together with clearly defined behavioral interfaces, which may also be
viewed as contracts; these contracts are respected by realizations of the interface spec-
ifications. Behavioral interfaces model the players’ available moves. They consist of a
list of preconditions (i.e., “When is the move legal?”’) as well as effects of the move
(i.e., “How does the move change the state of the system?”). Preconditions and effects
make statements on predicates that in turn model the overall system state. An according
set of predicates has to be added to the model when new moves are added.

2 http://www.festo-didactic.com/int-en/learning-systems/mps-the-modular-production-system/



660 C.-H. Cheng et al.

CB03 CB04

Conveyor belt

I:r-u-n-lmllrmm | D — ” — @ |
) ssmrarvsmnnn s Lever1

N @ 2 X Ya)Level 321

/ O) gOIHS’” VOE

\ DOO|
| 3 RPO1 . DID D) RASO01

\ @ Drillo1 G
/

Lever2 \D SIS ® Lever3

RS232 Ethernet (UDP/IP) CB01  CBO02
Desktop/Laptop - .

Fig. 1. The FESTO MPS demonstrator (left) and its abstract model (right)

Plant Topology. Work pieces are typically transferred between plant modules in an au-
tomation system. Therefore, we associate each hardware module with a set of operating
positions and the topology of a plant is specified as the overlapping of positions among
different hardware modules (see Section[3for an example).

Plant Behavior. The so-called problem specification describes the desired behavior of
the composed system (i.e., the goal or winning condition for Controller). MGSyn is
restricted to specifications where controller strategies can be synthesized symbolically
in time polynomial to the size of the translated game graph, ranging from reachability
to generalized reactivity-1 (GR-1) conditions [[15]].

Execution Platform and Networking. For generating executable program code from
the intermediate, platform-independent representation as generated by the core MGSyn
synthesis algorithms, it is necessary to specify the hardware setup, namely (i) the elec-
tronic control units (ECUs) that are attached to the hardware modules and (ii) the com-
munication infrastructure.

MGSyn is implemented using the Eclipse Modeling Framework (EMF) [1]) and
includes an extensible library of predefined plant modules, topologies, and behavioral
interfaces. Therefore, a design engineer may specify control problems by selecting
modules from this library and interconnecting them in a suitable way; the correspond-
ing game is created automatically by the MGSyn backend engine. The synthesis engine
of MGSyn is based on an extension of the GAVS+ solver library [5].

3 Example: Synthesizing Executable Code for FESTO MPS

We demonstrate the use of MGSyn for modeling and synthesizing executable code
for the FESTO modular production system (MPS) in Figure [[lby means of a concrete
example; see also [3]]. This plant consists of the modules RobotArmStorage (RAS),
ConveyorBelt (CB), Lever, RotaryPlate (RP), HeightSensor (HS), and Drill.

Modeling Hardware Modules. For example, conveyor belt CBO1 specifies the follow-
ing properties (compare Figure 2(a)):

e Two operating positions CBO1-from and CBO1-to.
o Initial state belt-connected CB01-from CBO1-to, where belt-connected is a
predicate.



MGSyn: Automatic Synthesis for Industrial Automation 661

e Behavioral interface belt-move-b (see Figure 2(b) for formal semantics). Intu-
itively, the interface enables to move a work piece from position ?from to position
?to if the hardware supports the transmission (belt-connected ?from ?to). Hence,
CBO1 is modeled as a unidirectional belt. at and occupied are further predicates
defined in the model.

We also specify ECUs and their controlled hardware modules in the model. For exam-
ple, as depicted in the left part of Figure Il FESTO FEC PLCs control the storage and
processing units, while the conveyor belts are controlled by Siemens LOGO! PLCs.

Topology Specification via Overlapping Positions. Once modules are specified, the
second step is to specify their topology. For instance, for the system in Figure [ the
destination of CBO04 is linked with the source of CB03. This spatial overlapping is
characterized in the model (see Figure 2Id)). Similarly, the source of Lever1 overlaps

14 T01_FESTOGarching2colorami &
4 &l platform:/resource/MGSynTestcase/src/model/ TO1_FESTOGarching2colorxmi
4 4 System Model
4 4 Hardware Model
» 4 Robot Arm Storage RASOL g
4 | 4 Conveyor Belt CBOL [
4 Position CBO1-from

(:action belt-move-b
:parameters (?0bj - unit ?from ?to - position)
:precondition (and (POTRAN) (belt-connected ?from ?to)
(at ?0bj ?from) (not (occupied ?to)))
=CBO1-to ] :effect (and (POTRAN) (not (occupied ?from))
= Type beltposition (not (at ?obj ?from))(at ?obj ?to)(occupied ?to))

= )
['_ Problems | Bl Censole | Properties &%
Property Value (b)
Concrete Mapping Attributes '= ConveyorBeltController T ‘ =
Defined Interfaces '= Actuation belt-move-b iialn archingZeolor:xmi
Description = » 4 Hardware Model
Initial Setting 'S (belt-connected CBO1-from CEO1-to) » 4 Formal Model (at balll CBO3-from)
Name '= CBOL 4 <4 Topology Model
Set Start Conveyor Belt Channel  '= 01 4 Position Overlapping beltposition
(a) 4 Position Overlapping beltposition
li Problems | B Console | 2 Properties &3
(and Property Value
(or (face wpl up) (face wpl down)) ;; Height of work piece is known Pasition Unified From I= Position CBO4-to
(and Position Unified To osition CBO3-from
(or ;a>b=-avb Unified Type = beltposition
(not face wp1 up)) ;; If wplis facing up, then... (d)
(and
(drilled wp1) ;; ...ensure it is drilled and sort by color:
(and

{or (not (color wp1 red)) (at wpl L1_a)) ; Red = L1_a m MGSyn: Automatic game-based synthesis

(or (not (color wpl white)) (at wpl L2_a)) ;; White > L2_a

or (not (color wp1l black)) (at wpl L3_a)) ;; Black > L3_a .
) (or (not { P ) (at wpl L3_a)) >3 2 MGSyn: Design-Synthesis-Codegen Environment: (S > S
(or ;; Color of work piece is known Game-based Synthesis within Model-driven Development
(color wp1 red) (color wp1 white) (color wp1 black) This wizard performs model concertization, synthesis, and
executable code generation based on the selected choices.
) General (Transformation)

)
(or ;a>b=-avb

(not (face wpl down)) ;; If wpl is facing down, then...

(and (not (drilled wp1)) (at wpl CBO3-from)) ;; ...do not drill
)

) ® (o]
(c) ‘ =)

hitex
Generate executable code

Fig.2. (a) Unidirectional conveyor belt modeled in MGSyn. (b) Behavioral interface of belt-
move-b. (¢) Sample specification (goal). (d) Unification of two belt positions (CB04-to and
CBO03-from). (e) Execution of MGSyn from within Eclipse with the list of synthesis and code
generation steps.



662 C.-H. Cheng et al.

with CB03-to while its destination overlaps with RP-a, implying Lever1 is able to
push work pieces from the belt to the rotary plate.

Synthesis, Architecture Mapping and Code Generation. The third step is to describe
the winning condition and perform synthesis. For instance, assume that an operator (or
a robot) is located at position CB0O3-from and feeds work pieces to the system. Due to
space limits, Figure 2lc) shows only a simple specification, which is to drill and store
a work piece based on its color (words after ; ; are comments). It also contains basic
error handling: if the object is not facing up, it shall not be drilled and shall be returned
back to the operator (position CB03-from).

To perform synthesis and code generation, the designer simply right-clicks on the
EMF model to invoke MGSyn from the popup menu (Figure 2(e)). Our engine first
creates a unified synthesis model by renaming overlapping positions to unique identi-
fiers. Then the model is fed into the synthesis engine and the engine reports a winning
strategy whenever possible. Synthesis for the specification in Figure 2lc) only takes
seconds.

MGSyn uses a template-based approach to generate code (e.g., state variables, pred-
icate functions, actions) from the model which is described in detail in Sectiond]

4 Back-end Engine and Execution Platform Mapping

(Engine) The back-end engine first translates the EMF model to an intermediate for-
mat, which is based on PDDL [[11]] extended with game semantics [4]. As PDDL is very
appropriate to specify behavioral interfaces, such a translation is very intuitive. How-
ever, to create a single model from multiple components, the engine needs to perform an
automatic renaming over operating positions that physically overlap. Then the engine
performs synthesis based on the intermediate model under the user-provided specifica-
tion of the winning condition (also in a PDDL-like format). The output of the engine
is a sequential program with of Controller’s moves, where each move is executed only
if a set of conditions on the system state is true. The conditions encode the dynamic
adaptation of Controller’s strategy to win the game in reaction to Environment’s moves.

The synthesis engine handles a subset of LTL properties such as GR-1 (known to be
able to capture practical specifications in reactive synthesis [15]]), where the complexity
of game solving is polynomial in the size of the game arena, which itself is exponential
in the number of Boolean variables used in system modeling. Useful optimizations for
speeding up synthesis rely on analyzing the specification and identifying relevant parts
of the game arena, thereby significantly reducing the number of Boolean variables in
game encoding [4]. Overall, the synthesis engine of MGSyn incorporates well-known
techniques for optimizing programs and bring them to assist optimizations in synthesis,
such as constant propagation and cone-of-influence computations, as described in [4].
Experiments in GAV S+ confirm that the optimization techniques described in [4] often
yield performance increase of at least an order of magnitude. These optimizations may
also be useful as preprocessing steps for other reactive synthesis frameworks.

(Execution Platform Mapping) After the synthesis engine has generated a winning
strategy for Controller, the strategy has to be mapped to an executable representation.
This is done in two steps: First, an API matching the modeled plant modules, topology



MGSyn: Automatic Synthesis for Industrial Automation 663

and behavior is generated from a code template written in Xpand language using EMF
tooling. Second, the synthesized solution is transformed so that it calls the functions
from the API. This second step is a simple text replacement that ensures that naming
conventions of the C++ programming language are enforced. The code finally compiles
to a console application, which covers both simulation and execution on real hardware.
For the latter scenario, the API code is based on a thin manually implemented device
driver layer for triggering the respective actions on the hardware.

The presented two-step approach has the advantage that the API is independent from
the actually executed strategy; it may be generated once and re-used for different win-
ning conditions as long as the plant model remains the same.

The model elements are mapped to API code as follows: Entities (e.g., operating
positions, work pieces, colors) are mapped to enumerations and made available as data
types. Predicates are transformed into state variables and predicate functions for retriev-
ing and modifying the system state. For each of Controller’s moves, a function with the
following behavior is generated: If execution on real hardware should be performed, it
calls the device driver library functions to trigger the respective control action(s). It then
updates the state variables according to the action’s effects specified in the model. For
each of Environment’s moves, a function is generated as follows: If execution on real
hardware should be performed, it calls the device driver library functions to retrieve the
respective sensor reading(s). If simulation should be performed, it prints a list of pos-
sible sensor readings extracted from the model and asks the operator to make a choice.
Finally, it updates the state variables according to the (simulated) sensor reading(s).

Lastly, the main program is generated as follows: When the program starts, the device
drivers are initialized if execution on real hardware should be performed. Moreover, the
state variables are set to their initial values according to the respective specification
in the model. Then, a function representing the synthesized strategy is called, which
contains the synthesis result to which the following transformations have been applied:
Evaluations of predicates within the conditions of an action call predicate functions or
directly evaluate state variables within the API. Invocations of control actions call the
functions representing the respective moves within the API.

5 Concluding Remarks

The strengths of MGSyn show when the automation task (winning condition) needs to
be adapted, as only small changes in the formal model are required to generate correct-
by-construction code compared to hours or days of manual modification. In practice it
is also useful that MGSyn indicates infeasibility, that is, there is no winning strategy
for the specified control problem.

These features set MGSyn apart from traditional programming paradigms in automa-
tion by increasing efficiency and reducing potential sources of error. So far we have
adapted MGSyn to two different FESTO MPS plants with different modules, processors,
and communication protocols. which were designed according to industrial standards.

Several extensions to MGSyn are planned, including the handling of real-time prop-
erties and for incorporating basic fault-tolerance mechanisms. The injection of faults, in
particular, may be modeled by moves of the Environment, and fault-tolerance patterns



664 C.-H. Cheng et al.

may be incorporated into the synthesis engine as suggested in [6]]. Currently, we are in
the process of extending the FESTO MPS demonstrator with capabilities for commu-
nicating with the work pieces to be manufactured, which may then (compare “Internet
of things / Industrie 4.0”), determine how they should be processed by the processing
plant. In this way, work pieces become important new players in the game of industrial
production control.

Acknowledgement. We thank Barbara Jobstmann for evaluating some optimization
techniques in Anzu.

References

1. Eclipse Modeling Framework, http://www.eclipse.org/modeling/emf/

2. Carmona, J., Cortadella, J., Kishinevsky, M.: Genet: A tool for the synthesis and mining of
petri nets. In: ACSD 2009, pp. 181-185. IEEE (2009)

3. Cheng, C.-H., Geisinger, M., Ruess, H., Buckl, C., Knoll, A.: Game solving for industrial
automation and control. In: ICRA (to appear, May 2012)

4. Cheng, C.-H., Jobstmann, B., Geisinger, M., Diot-Girald, S., Knoll, A., Buckl, C., Ruess, H.:
Optimizations for game-based synthesis. Technical Report 12, Verimag (2011)

5. Cheng, C.-H., Knoll, A., Luttenberger, M., Buckl, C.: GAVS+: An Open Platform for the
Research of Algorithmic Game Solving. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS
2011. LNCS, vol. 6605, pp. 258-261. Springer, Heidelberg (2011)

6. Cheng, C.-H., RueB, H., Knoll, A., Buckl, C.: Synthesis of Fault-Tolerant Embedded Systems
Using Games: From Theory to Practice. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011.
LNCS, vol. 6538, pp. 118-133. Springer, Heidelberg (2011)

7. Cortadella, J., Kishinevsky, M., Kondratyev, A., Lavagno, L., Yakovlev, A.: Petrify: a tool
for manipulating concurrent specifications and synthesis of asynchronous controllers. IEICE
Transactions on Information and Systems 80(315-325), 182 (1997)

8. Der Jeng, M., DiCesare, F.: A review of synthesis techniques for petri nets with applications
to automated manufacturing systems. IEEE Transactions on Systems, Man and Cybernet-
ics 23(1), 301-312 (1993)

9. Dimitrova, R., Finkbeiner, B.: Synthesis of Fault-Tolerant Distributed Systems. In: Liu, Z.,
Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799, pp. 321-336. Springer, Heidelberg (2009)

10. Ehlers, R.: Unbeast: Symbolic bounded synthesis. In: Abdulla, P.A., Leino, K.R.M. (eds.)
TACAS 2011. LNCS, vol. 6605, pp. 272-275. Springer, Heidelberg (2011)

11. Ghallab, M., Aeronautiques, C., Isi, C., Penberthy, S., Smith, D., Sun, Y., Weld, D.: PDDL-
the planning domain definition language. Technical Report CVC TR-98003/DCS TR-1165,
Yale Center for Computer Vision and Control (October 1998)

12. Jobstmann, B., Bloem, R.: Optimizations for LTL synthesis. In: FMCAD 2006, pp. 117-124.
IEEE (2006)

13. Jobstmann, B., Galler, S., Weiglhofer, M., Bloem, R.: Anzu: A Tool for Property Synthesis.
In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 258-262. Springer,
Heidelberg (2007)

14. Madhusudan, P.: Synthesizing reactive programs. In: CSL 2011. LIPIcs, vol. 12, pp. 428—
442. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2011)

15. Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of Reactive(1) Designs. In: Emerson, E.A.,
Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 364-380. Springer, Heidelberg
(2005)

16. Uzam, M., Zhou, M.: An iterative synthesis approach to petri net-based deadlock prevention
policy for flexible manufacturing systems. IEEE Transactions on Systems, Man and Cyber-
netics, Part A: Systems and Humans 37(3), 362-371 (2007)


http://www.eclipse.org/modeling/emf/

	MGSyn: Automatic Synthesis for Industrial Automation
	Introduction
	Modeling Industrial Automation Processes with Games
	Example: Synthesizing Executable Code for FESTO MPS
	Back-end Engine and Execution Platform Mapping
	Concluding Remarks


