
Game Solving for Industrial Automation and Control

Chih-Hong Cheng, Michael Geisinger, Harald Ruess, Christian Buckl, and Alois Knoll

Abstract— An ongoing effort within the community of verifi-
cation and program analysis is to raise the level of abstraction
in programming by automatic synthesis. In this paper, we
demonstrate how our synthesis engine GAVS+ achieves this
goal by automatically creating control code for the FESTO
Modular Production System. The overall approach is model-
driven: we reinterpret planning domain definition language
(PDDL) as a design contract to model two-player games played
between control and environment, such that users can describe
(i) basic abilities of hardware components, including sensors
(as environment moves) and actuators (as control moves),
(ii) topologies how components are interconnected, and (iii)
desired specification under a restricted class of linear temporal
logic. The model is processed by our game-based synthesis
engine, from which intermediate code is generated. By mapping
each behavioral-level action to a sequence of low-level PLC
control commands, we transform the intermediate code into
an executable program. The efficiency of our engine enables
to synthesize every scenario presented in this paper within
seconds. When the specification evolves, this implies a huge
time-gain compared to manual program modification.

I. INTRODUCTION

Engineering software controller systems contains two im-
portant subtasks, namely (a) creating the specification and
(b) implementing control programs which satisfy the speci-
fication. Developers need to partition their labor-hours over
design and implementation. Due to time constraints, two
problems arise: (i) An implementation does not satisfy the
specification. (ii) The specification might change over time
due to modeling errors or feature enhancements. Once the
implemented program is (almost) created but a slight change
appears in the specification, tremendous re-engineering ef-
forts might be required. For both two cases, the fixing process
requires several loops of verification and code modification,
which can be ad-hoc, tedious and error-prone. For safety
critical systems, the invested efforts might even grow higher.

To alleviate these problems, in this paper we address how
game-based program synthesis can be seamlessly integrated
into the design flow for control automation, increasing pro-
ductivity of developers. Precisely, given a concrete modular
automation system, together with a logic description of de-
sired behavior, we demonstrate a workflow to automatically
generate corresponding control software. Program synthe-
sis is a technique which makes the task of programming
implicit: a user first provides the high-level specification
defining the desired feature, and then the synthesis engine
automatically creates a program that fulfills the specification

C.-H. Cheng, M. Geisinger, H. Ruess and C. Buckl are with for-
tiss GmbH, Germany. A. Knoll is with Department of Informat-
ics, TU München, Germany. First two authors contributed equally
to this work. cheng,geisinger,buckl,ruess@fortiss.org,
knoll@in.tum.de

Platform run-time interpreter

Components

PLC

Topologies
(PDDL-like)

Logic specification
(PDDL-like)

Controller strategy
(intermediate form)

Function-architecture mapping
(automatic)

Executable code
(domain specific)

Game-based synthesis
(GAVS+ engine)

Abstract actions
(PDDL-like)

Sensor/actuator
functions

(concrete implementation)

Fig. 1. The framework for game-based synthesis for industrial automation.

(correctness by construction). Using such technique users
can concentrate on making the specification right and leave
the finding/creation of implementations to the engine. Apart
from pioneering work in verification [7] or in control the-
ory [14], recent examples for synthesis (to name a few)
include sketching [15], synthesizing linear temporal logic
(LTL) specifications [11], [8], [13], or partial synthesis for
deadlock avoidance in component-based systems [4].

To perform synthesis in automation systems, it is natural
to use game-theoretic approaches. In such a game, player
Control has the ability to perform actuation and to trigger
sensors while player Environment represents uncertainty in
the system, e.g., select values returned from sensors. The
system specification can be seen as conditions for Control
to correctly react over all possible sensor readings offered
by Environment. Then synthesizing a winning strategy for
Control amounts to automatically creating control software.

Toward this goal, we specifically address the combination
of (i) game-based synthesis and (ii) model-based design, as
we found existing work in game-based LTL synthesis makes
it difficult to specify (i) basic abilities of each component
and (ii) the topology how components are interconnected.
Figure 1 outlines our framework: it resolves limitations
in previous work by using PDDL [9] in a game-theoretic
setting, enabling to model behaviors of sensors, actuators
and topologies under an appropriate level of abstraction. We
use PDDL as it is known in planning for robotics. It is used
as a contract between the implementation of a component
and its envisioned environment (and thus could be replaced
by another language). These interface descriptions of the
components with the high-level specification of the overall

2012 IEEE International Conference on Robotics and Automation
RiverCentre, Saint Paul, Minnesota, USA
May 14-18, 2012

978-1-4673-1405-3/12/$31.00 ©2012 IEEE 4367

Conveyor belt

Storage Processing

Siemens
LOGO!

Siemens
LOGO!

Microcontroller

FESTO
FEC PLC

FESTO
FEC PLC

Desktop/Laptop

Ethernet (UDP/IP)RS232

Interpreter

Fig. 2. A demonstrator setup of the FESTO Modular Production System.

system are required by our synthesis engine GAVS+ [6]. The
result of synthesis is a high-level control with conditions
for actions to execute. By mapping each behavioral-level
action to a sequence of low-level PLC control commands,
we transform the state machine to an executable program.
The coordination between the strategy and actual running
hardware requires architectural support in form of a run-time
interpreter.

We give motivating scenario in Section II, followed by
fixing notations in Section III. The paper continues with the
workflow of automatic synthesis. Section IV describes our
efforts to raise the level of abstraction for synthesis by ex-
tracting features from components. Section V outlines game
solving techniques implemented in our game-based synthesis
library GAVS+. Section VI describes architectural supports
to bridge the result of synthesis to actual implementation.
Lastly, we report our evaluation and outline further directions
from Section VII to IX.

II. SCENARIO: SYNTHESIS FOR FESTO MODULAR
PRODUCTION SYSTEMS

In this section, we describe our demonstrator from FESTO
MPS (Modular Production System) for control automation.
Each unit of the MPS processes small colored work pieces
that are made out of plastic or metal. Our demonstrator setup
(see Figure 2 for illustration) is composed of two modules,
a processing unit and a storage unit.

1) The processing unit is built up from a rotating plate
with six locations, a height probe sensor (which tests
the shape of work pieces) and a drilling module (which
processes the work pieces).

2) The storage unit contains a robot arm that is used to
store and retrieve work pieces to/from a rack with six
storage locations.

3) Both units are connected over two unidirectional con-
veyor belts that can deliver one work piece at a time.

4) Several levers are located at certain positions to move
work pieces between the belt and the units.

(Basic specification) During the operation, a user can place
a work piece at the center of the lower conveyor belt (see
Figure 2). Our preliminary setting assumes that no work
piece is initially stored on the rack, and the specification
is to drill a work piece and store it on the rack based on its
color. We then add the following error handling attributes to
the specification.

a

b

c

f

e

d

a

b

c

f

e

d

a

b

c

f

e

d

J

Level 3,2,1

Color
Sensor

Height
Probe

Drill

P4

Z A B

C

F

GHI

Storage

Lever 3

Lever 1

Lever 2

Processing

R1

R2

Work pieces

Fig. 3. The FESTO MPS demonstrator setup in abstract form.

(Error handling 1: height detection) As the work piece
is provided by an operator, it is possible that the operator
wrongly places an inappropriate work piece, resulting in
breaking the drill head. Therefore, the new specification is
to extend from the basic scenario with the requirement that
a work piece shall only be drilled when it is of appropriate
height. When violated, it should be moved back to the initial
position for the operator to correct.
(Error handling 2: occupancy check) It can be observed
that our preliminary setting does not consider the scenario
where (a) some positions are initially occupied with work
pieces and (b) the rack might not be empty. Therefore, the
new specification is to extend from basic error handling by
adding the following specification:

1) If the storage rack is full, then return the work piece
back to the operator.

2) Place a work piece to a location only when the location
is not occupied by another work piece.

(Problem statement) The problem under investigation is
to automatically synthesize executable control code for the
FESTO MPS demonstrator based on the above specifications.
The synthesis process shall reduce re-engineering efforts
subject to the change of specifications (e.g., from basic
specification to advanced one).

III. PRELIMINARIES

We fix the notation for games required in this paper; for
complete theoretical background we refer readers to [10]. An
arena is a directed graph G = (V0]V1,E) where V0 and V1
are set of locations forming a partition over the set of all
locations. In this paper, we consider two-player, turn-based
games in the following and call them player 0 (Control) and
player 1 (Environment). A play starting from node v0 is a
maximal path π = v0v1 . . . in G where we assume that player
i determines the move (vk,vk+1) ∈ E if vk ∈ Vi (i ∈ {0,1}).
A winning condition defines when player 0 wins the play; if
π is not won by player 0, it is won by player 1. A node v is
won by player i if player i can always choose his moves in
such a way that he wins any resulting play starting from v.

IV. EXTRACTING FEATURES AND GAME CREATION

We explain how a game is created under the model
depicted in Figure 3. The figure describes the resulting
abstraction for defined components and topology.

4368

(Step 1: Discretization) We first perform discretization such
that we collect a set of positions of interest. For example, in
Figure 3, we specify six belt positions {A,B,G,H,I,Z}.
(Step 2: Contracts for actions) Based on the discretization,
we define basic abilities of each component by abstract
actions. We use PDDL [9] for specifying the contract
between the interface for individual components (used by
Control) and environment moves (used by Environment).
For example, the movement of a conveyor belt between
two positions is modeled by a parameterized control action
belt-move with preconditions and effects as shown below.

(:action belt-move
:parameters (?obj - unit ?from ?to - position)
:precondition (and (P0TRAN) (belt-connected ?from ?to)

(at ?obj ?from) (not (occupied ?to)))
:effect (and (P0TRAN) (not (occupied ?from))

(not (at ?obj ?from))(at ?obj ?to)(occupied ?to))
)

The control action belt-move specifies that when
two positions are connected (belt-connected ?from
?to), then a work piece can be moved to from position
?from to position ?to. Notice that one special predi-
cate P0TRAN appears both in the precondition and the
effect, implying that this is a move for Control, and the
subsequent move belongs to Control as well. We use the
valuation of P0TRAN to partition a game arena between
Control and Environment: when P0TRAN evaluates to
true, player 0 (Control) determines the move; otherwise
player 1 (Environment) determines the move. E.g., the
following action return-color-value is used by the
environment to offer the color of the work piece. It is only
available when the color sensor attached on the gripper
is active (color-sensor-on ?gri) and will return the
color of the work piece by setting the color predicate.

(:action return-color-value
:parameters (?obj - unit ?pos - position

?color - colortype ?gri - gripper)
:precondition (and (not (P0TRAN)) (color-sensor-on ?gri)

(in-robot ?pos) (at ?obj ?pos))
:effect (and (P0TRAN) (not (color-sensor-on ?gri))

(color ?obj ?color))
)

(Step 3: Guarantees for concretization) The third step is
to provide corresponding mappings from each abstract action
to concrete control functions running on concrete hardware.
For instance, performing belt-move between positions
requires a collaboration of underlying sensors and actuators
for the conveyor belt to achieve precise positioning.
(Step 4: Topologies and game creation) The last step
is to build up topologies, create initial conditions, and
construct specifications. For the abstract system in Figure 3,
the constructed topology and initial condition (robot is at
position Z without holding a work piece, the ball is provided
at position A, the first move is done by Control) are specified
in Figure 4.

V. GAME SOLVING

We summarize game solving techniques used in synthesis.
In algorithmic synthesis, efficient algorithms relies on the
computation of attractor. For i∈ {0,1} and S⊆V , we define

1 (at-lever B C) (at-lever F G) (at-lever I J)
2 (belt-connected Z A) (belt-connected A B)
3 (belt-connected G H) (belt-connected H I)
4 (next C D) (next D E) (next E F)
5 (next F R1) (next R1 R2) (next R2 C)
6 (at-height-probe D) (at-drill E)
7 (in-robot Z) (at Ball A) (free-hand robot) (P0TRAN)

Fig. 4. The topology of the system (line 1 to 6) and the initial condition
(line 7).

the map attri(S) as follows.

attri(S) := S∪{v∈Vi | vE∩S 6= /0}∪{v∈V1−i | /0 6= vE ⊆ S},

i.e., attri(X) extends X by all those nodes from which either
player i can move to X within one step or player 1− i
cannot prevent to move within the next step (where vE
denotes the set of successors of v). Lastly, define attractor
Attri(X) :=

⋃
k∈N attrk

i (X) to be the set of all locations where
player i can force any play to visit the set X . The definition
of attractor implies a fixpoint algorithm which can be solved
in time linear to the size of the arena. It is commonly used in
algorithmic synthesis: the following winning conditions (im-
plemented in our solver library GAVS+) all utilize attractor
computation.
• (Reachability) Given a set Vgoal of goal locations, we

can compute whether a strategy for Control exists by
checking whether the initial location is in Attr0(Vgoal).

• (Safety/Reachability+Safety) Given a set Vrisk of risk
configurations, we can compute whether it is unavoid-
able for Control to enter the risk by checking whether
the initial location is contained in Attr1(Vrisk). To exam-
ine there exists a strategy which reaches the goal while
never touching any risk locations, perform first safety
game solving followed by reachability game solving.

• (Büchi or Generalized Reactivity-1 conditions) Al-
gorithms for computing Büchi (repeated reachability)
or Generalized Reactivity-1 (GR-1: a subset of LTL en-
abling users to specify assumptions and corresponding
guarantees) [13] all use nested attractor computation.

In our engine, we combine the following techniques to
assist game solving on complicated problems.
• We develop optimization techniques as preprocessing

steps. In theory, such optimization corresponds to local
game solving techniques, i.e., the engine solves the
game by exploring only a subarena of interest. Using
optimization we can increase existing game-based LTL
synthesis tools (e.g., Anzu [12]) by more than 40 times
on selected examples. Our optimization also enables
us to compete with existing sequential planners in
the planning competition. Details can be found in our
technical report [5].

• We use symbolic encoding to create compact represen-
tation and perform game solving symbolically. Engines
for specifications above are implemented using JDD [1],
a Java library for symbolic manipulation of ordered
binary decision diagrams (OBDD) [3].

(FESTO MPS demonstrator) When designing the spec-
ification, we use reachability conditions. We can also use

4369

Büchi conditions to describe repeated behaviors. However,
our reachability game engine has an additional feature which
can create a witness tree from the computed strategy. A
witness tree is a representation of strategies which can be
interpreted by forward reasoning from initial configuration.
This makes our resulting strategy more understandable, com-
pared to strategies collected from backward computation
using attractor1.

Consider the basic problem specified in Section II, which
is to drill a work piece and store it on the rack based on the
color. Initially the color value is unknown, so in our goal
specification (reachability), we add an additional constraint
specifying that a work piece shall be of color either in red,
white or black. The set of goal states can be represented as
follows (we use ¬A∨B to represent A→ B).
(and
(drilled ball)
(and (or (not (color ball red)) (at ball l1_a))

(or (not (color ball white)) (at ball l2_a))
(or (not (color ball black)) (at ball l3_a))

)
(or(color ball red)(color ball white)(color ball black))

)

An excerpt from the created intermediate code synthesized
by our game solver engine is shown in Figure 5.
• In block 0, as conditions for executing belt-move

and robot-move are the same, it implies that the
controller can perform one of two actions. Indeed, as
the robot is initially in position Z, the controller can first
move the robot to position J to wait for the incoming
work piece, or first trigger the belt to transfer the work
piece (and later move the robot to position J).

• When executing sequentially until block 14, the color
of the work piece has been recognized (due to the
previous triggering of the color sensor), and the robot
is positioned at different places based on the color of
the work piece. E.g., when the ball is detected to be
black, then the robot is at position l3 a. The ball is
not in any position (at ball=ALL FALSE), as it is
grasped by the robot arm. Our optimization technique
is enabled to reason and conclude that the work piece
can only appear at most at one position.

VI. ARCHITECTURAL SUPPORT FOR GAME-BASED
SYNTHESIS

The following stage in the workflow of Figure 1 discusses
required process how the synthesized code is transformed
and executed on actual hardware.

Strategies created by our synthesis engine are monolithic,
meaning that an implementation is a centralized control
which coordinates multiple processing units. To achieve
coordination, a run-time architecture shall be provided as an
interpreter which (a) collects information from separate units,
(b) interfaces with the controller running the synthesized
strategy, and (c) delivers actions from control to the units.

1From the definition of Attri(X), we can observe that in synthesis, the
computation is performed backwards. This is contrarily to game solving
such as chess, where forward computation is used.

=======================
/* Start of block 0: */
IF (in-robot=Z && at-ball=A && free-hand(robot) && ...) {

belt-move({?obj=ball, ?from=A, ?to=B})
}
IF (in-robot=Z && at-ball=A && free-hand(robot) && ...) {

robot-move({?from=Z, ?to=J})
}
/* End of block 0: */
=======================
...
====================
/* Start of block 14: */
IF (
(in-robot=l3_a && at-ball=ALL_FALSE &&
!free-hand(robot) && color_ball=black && ...)

) {
robot-drop({?gripper=robot, ?obj=ball, ?room=l3_a})

}
IF (
(in-robot=l2_a && at-ball=ALL_FALSE &&
!free-hand(robot) && color_ball=white && ...)

) {
robot-drop({?gripper=robot, ?obj=ball, ?room=l2_a})

}
IF (
(in-robot=l1_a && at-ball=ALL_FALSE &&
!free-hand(robot) && color_ball=red && ...)

) {
robot-drop({?gripper=robot, ?obj=ball, ?room=l1_a})

}
/* End of block 14: */
====================

Fig. 5. The intermediate code (some details omitted for clarity) synthesized
from GAVS+ for the basic specification.

(Generating executable code) FESTO MPS units are usu-
ally controlled by PLCs that are directly attached to the
units. However, a global control is needed to execute the
generated strategy. We thus write an interpreter application,
further called control program, that executes the synthesized
strategy from Figure 5. For this purpose, the generated
intermediate code is automatically translated into C code by
(1) renaming all operators, variables, actions and predicates
to match the syntax of C and (2) ordering the parameters
to the function calls to match their original definition. The
result is illustrated at the top of Figure 6.
(Platform run-time interpreter) The function that are
called from the executable code (e.g., belt move(),
robot move()) are part of the platform run-time inter-
preter as introduced in Figure 1. The currently hand-written
implementation of belt move() is shown in the lower part
of Figure 62. Ideally, the manufacturer of the automation
system components would provide this code. The mapping of
function calls to actions in the automation system needs to be
implemented manually, however due to its modular nature,
the implementation can be reused across different setups.
We implement the platform run-time interpreter in C++ and
use the language’s object oriented concepts to build a class
hierarchy of common functionality patterns. For example, we
introduced special classes for executing actions (Command)
as well as retrieving sensor values (SensorCommand).
(Communication) We also provide a C++-based abstraction
library for the communication between the platform support

2Here for the ease of understanding, in the function we enumerate all
control decisions by case split. In general, this function requires to reference
another table which contains the mapping between the topology in the model
and the concrete hardware.

4370

/* Start of block 0: */
if (
(in_robot == Z && at_ball == A &&
free_hand(robot) && ...)

) {
belt_move(Ball, A, B);

}
...

void belt_move(unit_t obj, position_t from, position_t to)
{
// Assert preconditions
assert(belt_connected(from, to) && at(obj, from) &&
!occupied(to));

// Actions
if (A == from && B == to) {
SupplyWorkPieceCommand::exec(LP_DOMAIN_PROCESSING);

} else if (G == from && H == to) {
DeliverWorkPieceCommand::exec(LP_DOMAIN_PROCESSING);

} else if (H == from && I == to) {
SupplyWorkPieceCommand::exec(LP_DOMAIN_STORAGE);

} else if (Z == from && A == to) {
DeliverWorkPieceCommand::exec(LP_DOMAIN_STORAGE);

}

// Required since there is no status flag available
DelayCommand::exec(8000);

// Update variable and assert effects
v_occupied.erase(from);
v_occupied[to] = 1;
v_at[obj] = to; // Object can only be at one location

assert(!occupied(from) && !at(obj, from) &&
at(obj, to) && occupied(to));

}

Fig. 6. An excerpt from the final C code (some details omitted for clarity)
generated from the intermediate code as well as the hand-written platform
run-time interpreter code for belt move().

library and a PLC. It currently supports communication
over Ethernet (UDP/IP and TCP/IP), serial communication
(RS232, RS422, RS485) as well as an implementation of the
industrial communication protocol Modbus. The library is
cross-platform. Due to its object oriented nature, the library
can be easily extended.

In our scenario, the control program communicates with
the FESTO FEC PLCs over Ethernet (UDP/IP). We modify
the PLC programs so that every atomic action of the strategy
can be triggered individually. When an action is triggered,
the control program waits until execution has finished by
polling status flags in the PLC. Since the conveyor belts
are controlled by separate Siemens LOGO! controllers that
do not have an appropriate communication interface, we
furthermore add a microcontroller that translates incoming
requests from the control program over serial bus (RS232)
to simple commands sent to the conveyor belt controllers
over their digital input ports and modified the conveyor belt
control programs accordingly.

We want to stress that most of the required workarounds
were of artificial nature. In a real automation system, PLCs
are usually more powerful and connected to a common
fieldbus, simplifying the task of controlling them from a
global control program. We are currently working on using
more powerful PLCs and OPC (OLE for Process Control) [2]
to remove the workarounds and make the system compatible
with many existing automation systems.

VII. EVALUATION: ”HOW CAN SYNTHESIS HELP”

In this section, we report how can game-based synthesis
assist controller design based on our evaluation for the
FESTO MPS demonstrator.

A. Fast speed of synthesis

Given the desired specification (including the map of the
control function) mentioned in Section II, the corresponding
software is synthesized less than 5 seconds34. We have also
constructed a larger system by extending the configuration
in Section II with four additional FESTO MPS modules5.
Our preliminary evaluation on such model shows that the
synthesis engine is still able to synthesize strategy (create
the intermediate code) within reasonable amount of time
(depending on the complexity of the specification).

When the specification changes (while the system setup
remains the same), the new software can be created automati-
cally (unless there exists change of the mapping from abstract
functions to concrete control commands). For instance, basic
error handling requires to refine the specification in Section V
by distinguishing the height.
(and
(or (height Ball small) (height Ball large))
(and
(or (not (height Ball small))
(and (drilled Ball)
(and (or (not (color Ball red)) (at Ball L1_a))

(or (not (color Ball white)) (at Ball L2_a))
(or (not (color Ball black)) (at Ball L3_a))

)
(or (color Ball red)(color Ball white)

(color Ball black))
)

)
(or (not (height Ball large))
(and (not (drilled Ball)) (at Ball P1))

)
)

This brings a huge efficiency gain compared to manual
modification: in an initial experiment we invited a student
to (i) understand the code for the basic scenario and (ii)
extend the functionality to include error handling capabilities.
Compared to several seconds used by the automatic synthesis
engine, the student needs long work-hours to create an
implementation by modifying existing code without explicit
guarantee for correctness.

B. Concentrated focus on specification: experience report

With automatic synthesis, users can concentrate on the
high-level specification and the modeling. This paragraph de-
scribes some initial experience gained during our evaluation.

Initially we first synthesized successfully the control soft-
ware for the basic scenario (store work piece based on color).
When switching to the scenario of error handling, we found
that the system under control does not behave as expected:
the work piece does not return to the user successfully. We
realized that a problem occurred in position Z, which is a

3Evaluated under a 2.8 Ghz machine with 2 GB of memory.
4Video for actual execution of storing by color, height detection and

occupancy check available at: http://www.fortiss.org/formal-methods
5These expanded modules are no. 195780 (Distributing), no. 195781

(Testing), no. 535246 (Pick&Place) and no. 195761 (Sorting).

4371

position where (i) the belt can transfer a work piece and (ii)
the robot arm can drop a work piece. When robot-arm drops
a work piece, it opens its gripper. Nevertheless, triggering
belt transmission does not move the work piece without first
moving away the robot-arm: the belt is moving but the work
piece remains blocked by the gripper. We fix the condition
on the model to specify that the belt transmission from Z
to A is only valid when the arm is not at Z. The change
does not involve any change in the concrete mapping. The
solver then synthesizes correct control software which moves
the arm from Z first to a different position before moving
the belt. The solver automatically assigns a new position for
the robot that fulfills the added condition. Without worrying
how to fix the code, the total time from model fixing to code
generation is within 15 minutes.

VIII. GAME-BASED SYNTHESIS FOR CONTROL ACTION
PARALLELIZATION

Before we conclude the paper, we discuss how to ex-
tend our framework and synthesize parallelized control
actions to manipulate multiple workpieces based on ac-
tion independence. Denote two different control actions
action1(a1, . . . ,an) and action2(b1, ...,bm) as indepen-
dent if the following conditions hold:
• No parameter appears both in set {a1, . . . ,an} and in set
{b1, . . . ,bm}.

• Two actions are not invoked by the same hardware.
• In each action, at most one workpiece may appear in

the workspace6.
For instance, for the synthesized strategy of FESTO demon-
strator in Figure 5, actions belt-move(?obj=ball,
?from=A,?to=B)androbot-move(?from=Z,?to=J)
are independent, meaning that they can be executed in
parallel (see Figure 3 for illustration). Contrarily, action
activate-lever(?obj=ball,?from=F,?to=G),
which uses Lever 2 to push an item from F to G is not
independent from action belt-move(?obj=ball2,
?from=G,?to=H), which uses the upper conveyor belt to
transfer a work piece from G to H: although two actions are
executed on different hardware, the overlapping of position
G is reflected on the parameter. Given the degree i of
parallelization offered by the user, we can statically collect
the independence relation in our synthesis engine. Then
we create new symbolic transitions from the product of n
independent actions, where 0 < n < i as follows:

1) We restrict that in the new symbolic transition for
control, we only trigger at most one sensor (i.e., at
most one action has its :effect field change the
value of P0TRAN to false.

2) Given n independent control actions, create the sym-
bolic transition. During the creation of each action,
first omit constructing P0TRAN. Lastly, if the set of

6For an action which can manipulate simultaneously multiple objects in
its workspace (e.g., the rotary plate in Fig. 2), the parallelization is explicitly
in the model. Therefore, we manually refine such an action by considering
the joint effect of multiple workpieces, and conservatively disallow it to be
combined with other actions.

independent control actions contains an action which
triggers a sensor, then the combined control action
updates P0TRAN from true to false. Otherwise,
P0TRAN remains the same.

3) We do not need to combine multiple environment
actions, because of the restriction in 1).

IX. CONCLUSION

We have demonstrated a complete flow how game-based
synthesis can be used to generate executable code in control
automation. Given the desired specification (including the
map of the control function), the corresponding software is
synthesized within seconds. When the specification changes,
automatic synthesis enables to quickly generate correct soft-
ware. It is significantly faster compared to hours of manual
modification, which can also be ad-hoc and error-prone. The
technique can be extended to synthesize extra-functional be-
haviors such as fault-tolerant controllers; the game-theoretic
concept makes it applicable to describe fault models.

As stated in Section VI, the architectural support still
needs to be improved. We will integrate an OPC client into
our communication library for the control program to be able
to apply apply our approach to many real-world scenarios.
We are also planning to automatically synthesize at least
part of the currently manually written platform run-time
interpreter code from annotations in the domain model. This
makes adaptations of the platform mapping more local and
reduces manual implementation.

REFERENCES

[1] JDD project. http://javaddlib.sourceforge.net/jdd/.
[2] The OPC foundation. http://www.opcfoundation.org/.
[3] R. Bryant. Graph-based algorithms for boolean function manipulation.

Computers, IEEE Transactions on, 100(8):677–691, 1986.
[4] C.-H. Cheng, S. Bensalem, Y.-F. Chen, R.-J. Yan, B. Jobstmann,

A. Knoll, C. Buckl, and H. Ruess. Algorithms for synthesizing
priorities in component-based systems. In ATVA’11, LNCS. Springer-
Verlag, 2011.

[5] C.-H. Cheng, B. Jobstmann, M. Geisinger, S. Diot-Girald, A. Knoll,
C. Buckl, and H. Ruess. Optimizations for game-based synthesis.
Technical Report 12, Verimag, 2011.

[6] C.-H. Cheng, A. Knoll, M. Luttenberger, and C. Buckl. GAVS+: An
open framework for the research of algorithmic game solving. In
TACAS’11, volume 6605 of LNCS, pages 258–261. Springer, 2011.

[7] E. Clarke and E. Emerson. Design and synthesis of synchronization
skeletons using branching time temporal logic. Logics of Programs,
131:52–71, 1982.

[8] R. Ehlers. Unbeast: Symbolic bounded synthesis. In TACAS’11,
volume 6605 of LNCS, pages 272–275. Springer, 2011.

[9] M. Ghallab, C. Aeronautiques, C. Isi, S. Penberthy, D. Smith, Y. Sun,
and D. Weld. PDDL-the planning domain definition language. Tech-
nical Report CVC TR-98003/DCS TR-1165, Yale 1998.

[10] E. Gradel, W. Thomas, and T. Wilke. Automata, Logics, and Infinite
Games, volume 2500 of LNCS. Springer, 2002.

[11] B. Jobstmann and R. Bloem. Optimizations for LTL synthesis. In
FMCAD’06, pages 117–124. IEEE, 2006.

[12] B. Jobstmann, S. Galler, M. Weiglhofer, and R. Bloem. Anzu: A
tool for property synthesis. In CAV’07, volume 4590 of LNCS, pages
258–262. Springer, 2007.

[13] N. Piterman, A. Pnueli, and Y. Saar. Synthesis of reactive (1) designs.
In VMCAI’06, volume 3855 of LNCS, pages 364–380. Springer, 2006.

[14] P. Ramadge and W. Wonham. The control of discrete event systems.
Proceedings of the IEEE, 77(1):81–98, 1989.

[15] A. Solar-Lezama, R. Rabbah, R. Bodı́k, and K. Ebcioğlu. Program-
ming by sketching for bit-streaming programs. In PLDI’05, pages
281–294. ACM, 2005.

4372

