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Abstract

In this paper, we study how to make software controller synthesis more efficient and easy to
use for engineers. In order to simplify specifying a system, we believe that existing methodolo-
gies in synthesis of reactive systems from Linear Temporal Logic (LTL) need to be extended
with parameterized propositions. Therefore, we proposed to use the behavioral description
language PDDL and reinterpret it under game concepts. Although the use of such high-level
language eases modeling and results in understandable code, the size of the created game
can be excessively large. Our main contribution is to view and adapt program optimization
techniques as the key weapon for solving games locally, obtaining drastic performance gain.
Results are implemented as an extension to the GAVS+ tool. In our evaluation, we have syn-
thesized a control strategy for a demonstrator of FESTO’s modular production system and
translated the strategy into executable control code running on the production system.
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1 Introduction
Our work is motivated by the goal to provide end-users with a controller synthesis framework that is
easy-to-use and reasonably efficient. During our tool construction, we have encountered the following
challenges.

Challenge A: Ease of modeling. The first challenge is to provide the engineers with an adequate way
to describe a system setup, i.e., from a user’s perspective, the system should be describable under an ap-
propriate level of abstraction. E.g, a user may define basic abilities of each component as atomic actions
separately (for component reuse). Then, based on individual problems, the user specifies topologies defin-
ing how a system interconnects a set of components and gives the desired specification the composed
system should adhere to. We believe that in order to address the above challenge existing approaches
for synthesizing reactive systems, e.g., LTL synthesis, need to be extended with parameterized proposi-
tions. Therefore, we propose to use PDDL [13, 11] (the de-facto language in AI planning) together with a
dedicated predicate for system-level modelling. The dedicated predicate allows us to distinguish between
angelic (aka controlled) and demonic (aka uncontrolled) non-determinism. This enables the user to model
a system with parameterized control actions as well as an adversary environment (Section 2).

Challenge B: Efficient game solving. After the system is modelled, our engine translates the model
into a game with a winning condition (e.g., reachability, Büchi, Generalized Reactivity-1 conditions [23])
that depends on the specification. Then, it solves this game and synthesizes high-level control actions;
from these actions, executable code for dedicated platform is created by automatic refinement (Section 3).
Although high-level language facilitates the use of modeling, the size of the created game arena is usually
very high. This lowers the speed of game solving drastically and hinders its applicability to complex
systems. In this work, we show that efficient synthesis can be achieved by solving the game on a subarena
of interest (based on the specification). Our main contribution is to demonstrate that in the context of
controller synthesis, techniques from program optimization are useful to solve game locally leading to
significant performance gain in the synthesis time (Section 4). Our methodology is based on static checking
and can, therefore, be used as a preprocessing step in existing reactive synthesis frameworks.

Challenge C: Ease of understanding. Due to the use of PDDL, the generated strategy can already be
presented in a user-understandable way. Many applications are reactive systems, in which code blocks
chained together and executed repeatedly. As programmers are used to sequential forward reasoning, it
is sometimes difficult to understand strategies for such systems, in their reactive form usually based on
backwards reasoning. Therefore, for reachability games, we sequentialize the generated strategy based on
extracting witness from the attractor computation. This transformation is based on performing a forward
analysis using the synthesized strategy 1. This allows the user to freely choose between sequentialized-
reactive or reactive code.

In our to evaluate our approach (Section 5), we have extended our open-source tool GAVS+, which
allows users to automatically synthesize Java-like controller programs (with support of various winning
conditions) to accept PDDL descriptions with game-semantics. We have also implemented the optimiza-
tions proposed in this paper and evaluate them on several examples including the FESTO modular produc-
tion systems (MPS). For FESTO MPS, we have created scripts supporting automatic translation from our
synthesized behavioral-level code to executable2. Finally, we give a brief summary of existing work and
propose future directions (Section 6, 7).

1 Due to space limit details are omitted here.
2Visit (http://www.youtube.com/watch?v=Sb3bre916o4) for a short video showing the FESTO MPS executing au-

tomatically synthesized code.
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p2 p3 p4p1

Figure 1: An illustration for the monkey experiment in AI.

1 (define (domain monkey)
2 (:requirements :strips :negative-preconditions :game)
3 (:constants monkey box knife bananas glass waterfountain)
4 (:predicates (location ?x) (on-floor) (at ?m ?x) (hasknife) (onbox ?x)
5 (hasbananas) (hasglass) (haswater) (P0TRAN) (banana-moved))
6
7 ;; moves by the monkey
8 (:action GO-TO
9 :parameters (?x ?y)

10 :precondition (and (location ?x) (location ?y) (on-floor)
11 (at monkey ?y) (P0TRAN))
12 :effect (and (not (P0TRAN)) (at monkey ?x) (not (at monkey ?y))))
13 (:action GRAB-BANANAS
14 :parameters (?y)
15 :precondition (and (location ?y) (hasknife)
16 (onbox ?y) (at bananas ?y) (P0TRAN))
17 :effect (and (not (P0TRAN)) (hasbananas)) )
18 (:action CLIMB-UP ...)
19 ...
20 ;; moves by the experimenter (take banana)
21 (:action MOVE-BANANAS
22 :parameters (?x ?y)
23 :precondition (and (not (P0TRAN)) (not (banana-moved))
24 (location ?x) (location ?y) (at bananas ?y))
25 :effect (and (P0TRAN) (at bananas ?x) (not (at bananas ?y))
26 (banana-moved)))
27 ;; moves by the experimenter (do nothing)
28 (:action DO-NOTHING
29 :parameters ()
30 :precondition (and (not (P0TRAN) (banana-moved)) )
31 :effect (and (P0TRAN) (not (banana-moved))) )
32 )

Figure 2: The domain instance of the monkey experiment described using PDDL.

2 Modeling Games using PDDL

We illustrate our extension to PDDL using a modified version of the money example [2], a classical example
from artificial intelligence with the goal to develop intelligence for a (robot) monkey to accomplish certain
tasks. Our extension focuses on a part of PDDL, which we have commonly seen in our collected examples.
The formal syntax of this part of PDDL can be found in the appendix. For details concerning the PDDL
language, we refer the readers to [13, 11].

Monkey example [2, 14]. Consider the scenario shown in Figure 1. It has four positions p1, p2, p3 and
p4. In each of the positions a box, a knife, a fountain, a glass, or the monkey can be placed depending
on the initial configuration. The banana is hanging on the top of one location. The goal of the monkey
may vary from simple reachability (e.g., find the banana and eat it) to complicated ones involving subgoal
achievement (e.g., repeatedly drink water and eat banana). In our setting, we assume that the experimenter
can interfere and move the banana once in a while (e.g., every second step). We take a turn-based view, i.e.,
the monkey and the experimenter perform their moves in alternation. This is a common assumption because
it rules out only truly concurrent actions. Throughout the paper, we refer to the system (the monkey) as
player-0 and the environment (the experimenter) as player-1.

In general, an instance in PDDL consists of two parts [13]:

2/21 Verimag Research Report no TR-2011-12



Optimizations for Game-based Software Synthesis Cheng et al.

1 (define (problem pb1)
2 (:domain monkey)
3 (:objects p1 p2 p3 p4)
4 (:init (location p1) (location p2) (location p3) (location p4)
5 (at monkey p1) (on-floor) (at box p2) (at bananas p3) (at knife p4)
6 (at waterfountain p1) (at glass p2)
7 )
8 (:goal (hasbananas))
9 )

Figure 3: The problem instance of the monkey experiment described using PDDL.

1. A domain containing a parameterized system description that includes constants, predicates (ranging
over constants and objects) and actions (action schemata that modify predicates). A domain usually
also comes with a set of requirements, which gives details about with concepts a planner needs to
understand in order to solve problems in this domain.

2. A problem specifying the task the planner is intended to solve. It contains objects, the initial config-
uration and the goal specification.

Underlying transition system. A PDDL domain together with a problem definition defines a transition
system. A state of this system is given by an evaluation of the predicates. A predicate is either true or false
depending on the value of its arguments, which can be an object or a constant.3 E.g., assume we have a
predicate at taking two arguments, written as (at ?x ?y), and we have a constant monkey and two
objects p1 and p2, then there are 3 · 3 instances of the predicate at, each of them can be true are false. So,
the PDDL description defines a system with 23·3 states (of which some made be unreachable depending
on the initial configuration and the action definitions). Formally, let Pi to be the set of predicates of arity i
with i ranging from 0 to some finite number a. Furthermore, assume that all parameters of the predicates
are from the same domain D of constants and objects. Then, a configuration or state of the system is an
element of the tuple B|P0| × B|P1|·|D| × . . .× B|Pa|·|D|a .

The initial configuration, defined in the problem definition, describes the initial state of the transition
system. In PDDL, all predicates that do not appear in the description of the initial configuration are con-
sidered to be false. Action schemata describe how predicates changes and, therefore, define the transitions
in the underlying transition system. In general the transition system is non-deterministic. It is the task of
the planner to find a path through the system that satisfies the given goal specification. (PDDL assumes
that all predicates that are not explicitly used in the goal specification can take an arbitrary value.) In our
setting some of the transitions (i.e., changes of predicates) cannot be controlled by the planner, e.g., if
the experimenter moves the banana, the corresponding changes of the predicates it not controlled by the
monkey (the planner).

Adding uncontrollable behavior. We add a “degree of control” to the core of PDDL allowing us to
model the uncontrollable moves of the environment. It consists of two simple extensions.

1. We introduce a binary predicate P0TRAN in the domain description to partition player-0 and player-1
states and transitions. For a given configuration, when P0TRAN is evaluated to true, it is a system
(player-0) configuration; otherwise it represents an environment (player-1) configuration. Note that
we do not require a syntactic extension of PDDL, as the use of P0TRAN falls within the syntax of the
PDDL language. However, we use a non-standard interpretation for the predicate P0TRAN by as-
suming uncontrollable (demonic) non-determinism, when the predicate is true. The change between
system and environment configurations is done by executing actions and is in the responsibility of
the user defining the actions.

2. In the requirement field of the domain, denoted by (:requirements), we introduce the new re-
quirement :game to indicate that we expect that the predicate P0TRAN exists and that it has a differ-
ent semantics. (For technical reasons, we also have to add the requirement :negative-preconditions,

3PDDL also allows using types. Our system can handle types and we extensively use them in our experiments but for simplicity
we do not describe them here.
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because in environment moves, we use the negative precondition (not P0TRAN), and PDDL re-
quires to state the use of negation in preconditions explicitly.)

Monkey example (continued). Figure 2 shows the domain description of the monkey experiment.

• There are six constants (Line 3), called monkey, box, knife, bananas, waterfountain, and
glass.

• In Line 4 and 5, we define several predicates. E.g., (location ?x) takes an object (using one
variable ?x) and is evaluated to true or false. Note that predicates get their meanings through
the way they are used and changed in actions. As described previously, the predicate P0TRAN is
introduced for state partitioning.

• Starting from Line 7, we define action schemata for the domain. For example, consider the action
GRAB-BANANAS which takes one parameter ?y (Line 14). The action can only be executed if the
precondition is satisfies. For the action GRAB-BANANAS (Line 15-16), we required that the monkey
is at location ?y, has the knife (hasknife), and stands on the box (onbox ?y). Furthermore, the
banana needs to be at this location ?y as well. Finally, the predicate P0TRAN specifies that it is a
player-0 transition. The effect of GRAB-BANANAS (Line 17) is that the predicate hasbananas is
set to true and P0TRAN is set to false (allowing the experimenter to perform the next move).

• The two actions MOVE-BANANAS and DO-NOTHING can be performed by player-1 (the experi-
menter); the others belong to the monkey. For MOVE-BANANAS, it can only be triggered when
predicate banana-moved is false. After execution, it is set to true, and the experimenter need
to wait until banana-moved is reset false after executing DO-NOTHING.

Figure 3 shows the problem description of the monkey experiment.

• The problem is named pb1 (Line 1) and is connected to the monkey domain (Line 2).

• The objects using in the problem are given in Line 3. Except constants existed in the domain, four
additional objects (p1, p2, p3, and p4) representing locations are included.

• The initial configuration specifies the scenario, in which the monkey is in p1, standing on the floor
having neither the knife nor the glass. E.g., location(p1) appears in the initial configuration
means that location(p1) is evaluated to true in the initial state; location(monkey) does
not appear in the initial configuration means that location(monkey) is initially evaluated to
false. As no typing is used in this example, setting location(p1), . . . , location(p4) to
be true ensures that the monkey can only move between p1 to p4 (see GO-TO action for details).

• The goal of the monkey is described in the goal statement (Line 8) saying that the monkey should
get the banana, i.e., the purpose of the planning problem is to reach the configuration, in which
hasbananas is true. The goal statement turns into a reachability, Büchi, or safety condition de-
pending on the selected synthesis engine.

3 Constructing and Solving Symbolic Games
Our engine first combines an input instance from the domain and the problem (domain-problem binding)
and builds a symbolic representation of the underlying transition system. Then, it searches for a winning
strategy using different synthesis algorithms depending on the specification. These two tasks can be divided
into the following steps.

1. Based on the number of objects and predicates used in the problem description, we declare corre-
sponding Boolean variables to represent sets of states in the symbolic form. Each (BDD) variable is
represents in instantiated predicate, i.e., each parameter is concretized with a constant or an object
from the domain. More precisely, for each a predicate p(x1, . . . , xn) with arity n over domain D,
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we generated m|D| variables. We use p(d1,...,dn) with di ∈ D to denote the variable indicating if
predicate p concretized with objects d1, . . . , dn is true or false. Note that in general this number of
variables is required, because the number of states described by a PDDL description with an n-ary
predicate over a domain D is 2m

|D|
. In the next section, we show how to reduce this number by

analyzing the domain-problem binding.

2. The symbolic transition relation is created as follows: for each action, the algorithm first assigns
an object from the domain to each parameter. Then, it recursively traverses the abstract syntax tree
(AST) of the precondition and postcondition to build up the formula. During the traversal of the
AST of the postcondition, it explicitly records variables being updated. After traversal, if a variable
v is not updated, we conjunct the formula v ↔ v′ to ensure that the value of variable v remains
unchanged (v′ stands for the primed version). The detailed steps are as follows.

(a) Perform symbolic encoding to create the set of transitions for player-1.

(b) Create a list L, where for each element in the list, it is an player-0 action whose parameters are
concretized by the domain of objects. E.g., in the monkey example, the symbolic representation
of GRAB-BANANAS(p1) is stored as an element in the list. List L is used to interpret the
resulting strategy in later stages4. The set of transitions for player-0 amounts to the disjunction
over elements in list L.

3. The selection of engines is (e.g., reachability, GR-(1)) done by the user. For reachability games,
a backward attractor computation engine is invoked. During the attractor computation, we contin-
uously record the set of transitions T that be forced to reach a goal state. When the initial state is
contained in the attractor, the computation stops, and we intersect T with each element δ (concretized
action) in L to derive the precondition to perform action δ (e.g., derive the precondition when to ex-
ecute GRAB-BANANAS(p1)). Finally, we parse the precondition and create Java-like statements.
For safety and Büchi games similar steps are applied. The engine also handles combinations of
reachability and safety conditions, and the Generalized Reactivity-(1) condition [23].

4 Program Optimization for Local Game Solving
The standard translation, described in the previous section, of a PDDL description to a corresponding
symbolic game usually creates a very large number of Boolean variables. For instance, consider the Hanoi
tower domain (a classical domain taken from the PDDL4J library [2]) shown in Figure 4. It contains one
unary predicates clear and two binary predicates on and smaller. Under a problem of three pegs and
eight disks, written in PDDL as (:objects peg1 peg2 peg3 d1 d2 d3 d4 d5 d6 d7 d8)
and leading to a domain of size eleven, the number of variables for the symbolic encoding is equal to
2 · (11 + 2 · 112) = 506. (The constant factor 2 in front is due to the fact that we have the variables and
their primed versions to encode the transitions relation.) Although, the use of typing (i.e., separate between
pegs and disks) helps to alleviate the number of used variables, it does not solve it, and it is easy to find
examples with typing, in which the number of variables go beyond the scope of any BDD package5. Recall
that in general we cannot do better, because the number of states described by a PDDL description with one
unary and two binary predicates over a domain with eleven elements, is 211+2·112 . However, by carefully
analyzing the domain-problem binding and identifying relevant regions, we can be much more efficient as
our experimental results show.

In the following we present a set of optimizations techniques that identify relevant regions of the game
graph, which we call subarenas or local games, that are sufficient to solve the game. The key idea behind
the optimizations is to use simple static analysis techniques over (a) domain-problem binding and (b) the

4When viewing the PDDL engine as LTL synthesis tools, this step brings difference to others such as Unbeast [8], where in these
tools only bit-patterns can be represented as output. With such list L, we can conjunct the generated strategy with concretized actions
(both represented in BDDs) in L to derive precise preconditions for executing each action. This makes our generated strategy easier
to understand.

5Note that since we are in a game setting, every step in the game requires a quantifier alternation, and BDDs are currently the most
efficient way to handle quantified Boolean formulas.
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(define (domain hanoi)
(:requirements :strips)
(:predicates (clear ?x) (on ?x ?y) (smaller ?x ?y) )
(:action MOVE

:parameters (?disc ?from ?to)
:precondition (and (smaller ?to ?disc) (on ?disc ?from) (clear ?disc)(clear ?to))
:effect (and (clear ?from) (on ?disc ?to) (not (on ?disc ?from))(not (clear ?to)))

)
)
(define (problem pb1)

(:domain hanoi)
(:requirements :strips)
(:objects peg1 peg2 peg3 d1 d2 d3)
(:init

(smaller peg1 d1) (smaller peg1 d2) (smaller peg1 d3)
(smaller peg2 d1) (smaller peg2 d2) (smaller peg2 d3)
(smaller peg3 d1) (smaller peg3 d2) (smaller peg3 d3)
(smaller d2 d1) (smaller d3 d1) (smaller d3 d2)
(clear peg2) (clear peg3) (clear d1)
(on d3 peg1) (on d2 d3) (on d1 d2)

)
(:goal (and (on d3 peg3) (on d2 d3) (on d1 d2)))

)

Figure 4: Hanoi tower domain and problem (3 disks and 3 pegs) described using PDDL.

goal specification to discover regions that are sufficient to solve the game but can be represented by a
smaller set of possibly fresh variables.

Similar ideas have been applied in verification to, e.g., reduce the number of variable in a SAT instance
(see Section 6). Intuitively, in verification any reachable state is a “relevant” state, while in synthesis
only winning reachable states are relevant. There are several reasons why such techniques are particularly
interesting in the context of synthesis.

1. They simplify the computed strategy and therefore improve the quality of the synthesized code by
making it easier to understand.

2. Currently, the most efficient reactive synthesis engines are based on BDDs and a reduction of the
number of used variables, can be crucial for applying synthesis at all.

3. Finally, we can re-encoding the problem with the specification in mind, e.g., if a safety specification
requires two predicates to have the same value, we can encode them using a single variable. This
allows us also to do optimizations directly on the specification (see Section 4.4).

4.1 Constant Replacement
The aim is to find a set of variables (predicates with concretized predicates) that have a constant value
during the synthesis process. These variables can be replaced by their value (true or false) during the
creation of symbolic transition system.

Analysis step. We present a simple heuristic to detect predicates with constant values proceeds. Given a
predicate p(x1, . . . , xn) with x1, . . . , xn from the domain D. If p does not occurs in an effect (i.e., post-
condition) of any action schema, then p is constant for any instantiation and every variable in {p(d1,...,dn) |
d1, . . . , dn ∈ D} can be replaced by its value. More precisely,

• if p(d1, . . . , dn) occurs positively in the initial configuration of the problem, then p(d1,...,dn) is re-
placed by true,

• otherwise p(d1,...,dn) is replaced by false.

Recall the problem of Hanoi tower (Figure 4), the predicate smaller is used to describe the relation
between (a) peg and disks and (b) two disks. From the action schema in Figure 4 it follows that predi-
cate smaller, once concretized, never changes its value (e.g., (smaller peg1 d1) remains true).
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Therefore, we can safely ignore the construction of smaller and replace the occurrence in concretized
transitions by its initial value. E.g., in Figure 4 during the symbolic game construction, when we encounter
(smaller peg1 d1) in the precondition, we replaced it by true. Under a problem of three pegs and
eight disks, the number of variables changes from 506 to 2(11 + 112) = 264 leading to a reduction of
variables by 48%.

4.2 Binary Compaction
The idea of our second technique is to perform binary encoding of a set of Boolean variables that are
mutually exclusive, i.e., at most one of them is true in any reachable state. E.g., recall the predicate (at
?object ?location) from the money example with the intuitive meaning that it specifies whether
an object is at a certain location. Assume we have already concretized the parameter ?object to be the
monkey. The domain of the parameter ?location contains four locations: p1, p2, p3, and p4.6 The
direct encoding would generate four variable, one for each location. If we assume that the monkey can be
in at most one location, then we can encode its location (being in p1, p2, p3, p4 or in none of them) using
only three variables. In general, we can reduce the number of variables from n to dlog(n+1)e. If we check
for exactly one instead of at most one the number reduces to dlog ne.

Analysis step. We present a heuristic to detect variables that are mutually exclusive for action schemata
with pre- and postconditions that are given as a conjunction of literals, which are predicates or their nega-
tions. (All our benchmarks as well as the examples from the PDDL4J library follow this convention.)

Predicate with one parameter. Given predicate p(x), where x ranges over elements from the domain
D, we apply binary compaction, if following conditions hold:

1. In the initial configuration, there is at most one element d ∈ D such p(d) holds.

2. For every parameterized action and for all of its parameters x1, . . . , xn, one of the following condi-
tions holds:

(a) p(xi) does not occur in the postcondition, or

(b) p(xi) appears only negatively in the postcondition, i.e., ¬p(xi), or

(c) if p(xi) appears in the postcondition, then either (i) p(xi) appears in the precondition, or (ii)
there is another parameter xj such that p(xj) is in the precondition and ¬p(xj) is in the post-
condition.

If the above check succeeds, we use the Boolean variables V = v0, . . . , vm with m = dlog(|D|+ 1)e − 1
to represent the truth assignments to the predicates p(d1), . . . , p(d|D|). More precisely, we first assign to
each element d ∈ D an integer value between 0 and |D| − 1. Let val(d) be the function mapping d to its
value; the value is used to represent that the predicate p concretized with element d is evaluated to true,
while for all other elements d′ ∈ D, p(d′) is false. We use enc(d) to represent this encoding, e.g., assume p
ranges over D = d1, d2, d3, d4, d5 and val(d1) = 3, then enc(d1) = v0 ∧ v1 ∧ ¬v2 with V = {v0, v1, v2}.
We use the value |D| to represent that none of the predicates is true, i.e., ∀d ∈ D : ¬p(d). We restrict the
valid assignments to the variables in V to values≤ |D|. This can be done by conjoining a Boolean formula
encoding ≤ |D| to the symbolic transition relation. Note that the length of this formula is at most 2 · |V |,
i.e., ≤ 5 can be encoded as ¬v2 ∨ (v2 ∧ ¬v1). During the construction of symbolic transition relation for
an action, the general idea is to replace every occurrence of p by its corresponding encoding, i.e., for all
d ∈ D,

• if p(d) or ¬p(d) appears in the precondition translate it to enc(d) or ¬enc(d), respectively.

• if p(d) or ¬p(d) appears in the postcondition translate it to enc′(d) or ¬enc′(d), respectively, where
enc′(d) refers to the formula obtained from enc(d) by replacing the variables in V with their primed
version.

6Strictly speaking, without typing the domain contains also the constants monkey, box, knife, . . .
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• If neither p(d) nor ¬p(d) appears in the postcondition, we add the constraint p(d)↔ p′(d).

In order to avoid adding many constraints of the form p(d)↔ p′(d) and speed up the implementation,
we implemented a set of additional rules, e.g., if for all d ∈ D, p(d) does not appear in the postcondition
(meaning the assignments to p(d1), . . . , p(d|D|) do not change) and we can use the formula

∧
v∈V : (v ↔

v′), or alternatively, if there is only one d ∈ D s.t. if p(d) appear in the precondition and ¬p(d) in the
postcondition, we use the formula enc(d) ∧ enc′(|D|).

Predicate with two or more parameters. Currently, for predicates with more parameters, we check if
binary encoding can be applied to the last parameter. E.g., for predicate p(x1, x2) with x1, x2 from the
domain D, we check for every d ∈ D, if the value of the predicates p(d, d1), . . . , p(d, d|D|) with di ∈ D
are mutual exclusive during the synthesis process.

4.3 Goal-indifferent Variable Elimination
Our last optimization aims to identify variables that are unnecessary to satisfy the goal specification, i.e., if
there exists a winning strategy that modifies these variables, then there exists another winning strategy that
leaves them unchanged.

Recall the monkey example, if the goal of the monkey is to fetch the banana, then whether the monkey
holds the glass can be viewed as irrelevant: whenever there exists a strategy which grasps the glass (and thus
changes the hasglass variable), there exists another strategy that does not include grasping the glass.
This knowledge corresponds to inferring from the specification a set of actuators that are not required in
the concrete setup to reach the goal. This computation corresponds to computing the cone-of-influence
computation used in verification.

Analysis step. The analysis step for reachability games, which can also be applied to GR-1 games, pro-
ceeds as follows: first, add all variables that appears in the goal condition, i.e., the variables that do not have
a “don’t care” value in the goal condition, in a set S. We use the set S to store all the variables that have
a potential influence on the goal. Then select a set of actions ∆ whose postcondition (i.e., the :effect
field in an action) changes variables in S. Add the set all variables S′ which appear in the precondition
(i.e., the :precondition field in an action) of ∆ to S. Repeat until S saturates, then treat variables not
contained in S as Ŝ. Denote the set of variables used either in the precondition or in the postcondition by
player-1 transitions as SP1

. Then variables within Ŝ \ SP1
can be omitted for construction.

The correctness relies on the following observations:

• For player-1, whether it can perform a move is insensitive to variables in Ŝ \ SP1 (i.e., outside SP1 ).
Therefore, these variables can be omitted for player-1, and we do not restrict the ability of player-1.

• For player-0, to reach the goal, variables within Ŝ \ SP1 (i.e., within Ŝ) are not useful at all, as they
do not appear in all of the possible control decisions leading to the goal.

E.g., consider the monkey example, where the goal is to fetch the banana. Initially, S contains one
element hasbanana. Action GET-BANANA(p3) contains hasbananas in the postcondition, so we
add (location p3), hasknife, (at bananas p3), and (onbox p3) to S, as their values can
be sensitive to hasbananas. Continue the process, it can be concluded that hasglass and haswater
are not included in S. Also, for the experimenter, the set of variables used in MOVE-BANANAS and
DO-NOTHING do not include hasglass and haswater. Therefore, in our symbolic encoding we
safely ignore haswater and hasglass. Subsequently, we ignore constructing actions PICK-GLASS
and GET-WATER, as they only update hasglass and haswater.

4.4 Optimizing Specifications
In the following, we show on an example that we can also apply the optimizations directly on the goal
specification. We consider specifications in Generalized Reactivity-1 (GR-1) format [23], a subset of LTL
expressive enough to encode most of specifications that occur in practice.
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Recall that the general ideas is to detect a set of states such that computing a strategy on these states is
sufficient to solve the game. Then, we re-encode this set of states with a hopefully smaller set of possibly
fresh variables such that we can derive the initial variables from the new set of variables. E.g., assume
we aim to synthesis a fair arbiter for n clients. The interface to each client consists of two variables (i)
ri and (ii) gi indicating if (i) the client requested the resource and (ii) if the client is granted the resource.
Furthermore, we assume that the arbiter follows the following protocol: once the resource if granted, the
grant signal gi is kept high until the client drops its request ri. Note that in order to be able to implemented
a fair arbiter, we need to assume that requests are drop eventually. Formally, our specification consists of
the following sets of desired properties. Given the specification using LTL-operators always(ϕ) (i.e., ϕ is
always true), next(ϕ) (i.e., ϕ holds in the next step), and eventually(ϕ) (i.e., ϕ holds at some point in the
future). Note that always(eventually(ϕ)) means that ϕ will hold infinitely often. For a details description
of LTL we refer the reader to [19].

1. Mutual exclusion ϕe: for client i and j 6= i, always(¬gi ∨ ¬gj)

2. Fairness ϕf : for all client i, always(ri → eventually(gi)). In GR-1 each of these properties is
encoded using a new atomic proposition si and the following formulas. Note that these formulas
represent a symbolically encoded deterministic Büchi automaton that keeps track of the property.

(a) Initialization: ¬si
(b) Transition: (i) always(¬si∧(¬ri∨gi)→ next(¬si)), (ii) always(¬si∧ri∧¬gi → next(si)),

(iii) always(si ∧ ¬gi → next(si)), and (iv) always(si ∧ gi → next(¬si))
(c) Fairness: always(eventually(¬si))

3. Protocol ϕp: for all client i, always(ri ∧ gi → X(gi))

4. Fair clients ϕa: for all client i, always(ri ∧ gi → eventually(¬ri)). The GR-1 encoding again
introduces for each client a new atomic proposition ti. Formally, the corresponding specification is
given by

(a) Initialization: ¬ti
(b) Transition: (i) always(¬ti∧ (¬ri∨¬gi)→ next(¬ti)), (ii) always(¬ti∧ri∧gi → next(ti)),

(iii) always(ti ∧ ri → next(ti)), and (iv) always(ti ∧ ¬ri → next(¬ti))
(c) Fairness: always(eventually(¬ti))

The final specification is given by ϕa → ϕe ∧ ϕf ∧ ϕp stating that if the clients are fair, then the arbiter
satisfies its requirements. This specification refers to 4 · n atomic propositions (ri, gi, si, and ti for each
client).

Optimization step 1. In order to reduce the number of atomic propositions, we can use the fact the grant
signals gi are mutually exclusive. We introduce a set of new variables g′0, . . . , g

′
dlog(n+1)e−1 to represent

the grant signals in binary encoding, e.g., for three clients, we get two variables g0 and the grants signals
g0, g1, and g2 are encoded as usual, i.e., g0 = ¬g′1 ∧ ¬g′0, g1 = ¬g′1 ∧ g′0, and g2 = g′1 ∧ ¬g′0. The
unused assignment g′1 ∧ g′0 is used to encode that no client is currently accessing the resource. Let enc(i)
be the formula representing the binary encoding of grant i using the variables g′i. We obtain for alternative
encoded specification by replacing all occurrences of gi by enc(i). Furthermore, since our encoding ensure
mutual exclusion, Property (1) is not required anymore. Note that the new specification refers only to
3 · n+ dlog(n+ 1)e atomic propositions.

Optimization step 2. By inserting Property (3) into Property (4), we obtain the following four prop-
erties: (i) always(¬ti ∧ (¬ri ∨ ¬gi) → next(¬ti)), (ii) always(¬ti ∧ ri ∧ gi → next(ti ∧ gi)),(iii)
always(ti∧ ri∧gi → next(ti∧gi)), and (iv) always(ti∧¬ri∧gi → next(¬ti))from which we can easily
deduce that a synthesized system is only correct if ti is true, implies that gi is true as well, i.e., it needs to
respect the derived property always(ti → gi) for all clients i.7 This allows us to conclude that the variables

7Note that if we cannot deduce a property necessary for simplification by syntactic checks, we can always build a transition system
by considering only the involved requirements and model check the property.
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t1, . . . , tn are also mutual exclusive, and we could apply the same reduction as shown above. Intuitively,
such an encoding would remember only the id of the client for which Property (4) needs to be tracked.
However, we can also establish a stronger property, namely, that this id is given by the value of the variable
g′i used in enc(i). Using this property, Property (4) simplify to always(rc ∧ gc → eventually(¬rc)), where
c refers to the current client (given by value of the variables g′i). This allows us to replace a conjunction
of n properties (one for each client) by a single property. The corresponding variable encoding uses only
three new variables rc, gc, and t. Variables rc and gc point to the request and grant signal of the client
currently accessing the resource, i.e., ∀i : always(enc(i) → (rc ↔ ri) ∧ gc). Note that since Property (4)
is an assumption on the environment, the variables rc and gc can be chosen arbitrarily by the environment if
none of the clients accesses the resource. Variable t is used to check if the client currently accessing the re-
source is fair. Formally, we obtain the following specification, which is similar the one for the ti-variables.
(Recall that enc(n+ 1) means that none of the clients is currently accessing the resource.)

1. Initialization: ¬t

2. Transition: (i) always(¬t ∧ (¬r ∨ enc(n+ 1))→ next(¬t)), (ii) always(¬t ∧ r ∧ ¬enc(n+ 1)→
next(t)), (iii) always(t ∧ r → next(t)), and (iv) always(t ∧ ¬r → next(¬t))

3. Fairness: always(eventually(¬t))

The variables t0, . . . , tn are derived from t as follows: ti = (enc(i)→ t) ∧ (¬enc(i)→ false)
Our final encoding used (i) n request signals (ri), (ii) dlog(n + 1)e grant signals (g′i), (iii) n variables

to encode Property (2) (si), and (iv) 2 variables to encode Property (4) (s and t), which give a total of
2 · n+ dlog(n+ 1)e+ 2 variables.

5 Implementation and Evaluation
In order to evaluate our optimizations, we have extended the functionality of our tool GAVS+8 and per-
formed a case study. In the following, we give a summary of the experiments and results. The models,
demonstrators, and a detailed discussion over results can be found in the appendix.

Basic evaluation. To obtain an idea concerning our preprocessing scheme in subarena creation, we use
the Hanoi tower example as basic evaluation. Our technique enables us to solve significantly larger prob-
lems (Table 1). We also applied the techniques to basic planning problems, in which no adversary en-
vironment is modeled, and compare with other PDDL-based planners from the International Planning
Competition (IPC) taking place every three years. We compare two planners (i) seq-opt-gamer [18], the
winner of the last edition (IPC’2008)9 and (ii) FastDownward [15], used as a starting point for many teams
entering the competition. Despite the fact that our program is implemented in Java, it competes well with
other two planners implemented in C++ on our benchmarks (see Table 3). In addition, we can create con-
trollers for adversary environments and more complex conditions than considered by traditional planners.
As expected, on smaller examples, our implementation is less efficient than the other tools.

Optimized specification evaluation . To show that the influence of optimizing the specification, we have
synthesized an arbiter using the initial and the optimized specification presented in Section 4.4 using the
synthesis tool Anzu [16]. We have used Anzu for two reasons: first, the core PDDL language currently
implemented in GAVS+ does not support object equality, which makes it hard to model simultaneous re-
quests from the environment. We will add equality in the next version of GAVS+. Secondly, using Anzu
also allows us to show how the optimizations can be applied independently of the underlying synthesis tool.
In Table 4, we show the total time Anzu needs to synthesize the arbiter for the initial and optimized speci-
fication depending on the numbers of clients. The times needed for the initial and optimized specification
differ by an order of magnitude, e.g., for 20 clients the time reduces from about 500sec to 15sec.

8Software and examples (together with the synthesized behavioral code) are available at
http://www6.in.tum.de/~chengch/gavs/simbesyn.html.

9Unfortunately, we are unable to obtain the winner of this year’s competition.
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Table 1: Experimental results (seconds)
Problem GraphPlan1 Symbolicn Symbolico Steps to goal
Hanoi 4 0.69 1.13 0.55 15 steps
Hanoi 5 9.11 1.83 0.60 31 steps
Hanoi 6 t/o 4.34 0.93 63 steps
Hanoi 7 t/o 23.98 1.612 127 steps
Hanoi 8 t/o t/o 1.92 255 steps
Hanoi 9 t/o t/o 2.83 511 steps
Hanoi 10 t/o t/o 5.39 1023 steps
Hanoi 11 t/o t/o 13.52 2047 steps
1 Prebuilt algorithm in PDDL4J
t/o Timeout (> 400 seconds)
n GAVS+: No optimization
o GAVS+: Optimization based on variable reduction

Table 2: Results for FESTO MPS domain
Testcase Execution Time (sec)H Remark

1 1.22 Simple planning
2 30.42 Storing based on color
3a 29.93 2 + object detection
3b 86.34 2 + object detection
3c 97.47 2 + object detection
4a 231.21 3 + capacity detection
4b 420.06 3 + capacity detection

H Change the default memory setting to 6000Mb for Java Virtual Ma-
chine

Table 3: Experimental results (seconds)
Problem Symbolico1 Symbolico2 seq-opt-gamer FastDownwardH1

Logistics pb0 1.09 1.02 0.88 3.29
Logistics pb1 6.85 7.12 9.47 m, t/o
Logistics pb2 10.62 16.92 p.e. m, t/o
Logistics pb3 3.02 2.18 p.e. p.e.
Logistics pb4 16.63 16.27 14.48 m, t/o
Barman pb1 72.52 23.74 45.63 39.26
Barman pb2 66.09 22.24 70.70 39.97
Barman pb3 66.67 20.73 99.15 39.47
Barman pb4 55.57 21.50 118.00 39.67
Visitall pb4full 0.90 0.87 0.68 0.09
Visitall pb5full 1.76 1.48 3.37 46.52
Visitall pb6full 15.65 23.63 t/o m, t/o
Gripper pb4 1.91 3.331 0.70 0.06
Gripper pb5 1.80 4.221 1.15 0.80
Gripper pb6 31.22 57.181 19.81 m, t/o
Gripper pb7 3.76 8.091 6.24 m, t/o
t/o Timeout (> 300 seconds)
p.e. Parser error
m Memory error
o1 GAVS+: Optimization based on variable reduction
o2 GAVS+: Optimization based on variable reduction and FORCE ordering [3]
1 GAVS+: The FORCE heuristic is applied only once
H1 FastDownward: option -search "astar(blind)" (see manual)

Table 4: Synthesis times (seconds)
#Clients Time (original) Time (optimized)

1 0.04 0.07
2 0.13 0.16
3 0.29 0.23
4 0.60 0.39
5 1.20 0.50
6 1.83 0.71
7 2.89 0.90
8 5.50 1.21
9 8.68 1.56

10 11.86 2.22
11 15.60 2.38
12 33.95 3.64
13 50.82 4.39
14 63.15 5.04
15 68.26 7.23
20 495.13 14.13
25 t/o 38.41
30 t/o 96.80

t/o Timeout (> 1800 seconds = 30 min)

FESTO modular production system. We have also applied our techniques to synthesize controllers for
the FESTO MPS10. The MPS was developed for educational purposes, and is a good approximation for
a real industrial automation process. Each unit of the MPS processes small colored pieces that are made
out of plastic or metal. Our demonstrator setup (see Figure 5) is composed of two modules, a processing
unit and a storage unit. The processing unit is built up from a rotating plate with six locations, a height
probe sensor that analyzes the shape of pieces and a drilling module that processes the pieces. The storage
unit contains a robot arm used to store and retrieve the object to/from a three-layer rack with six storage
locations each. Both units are connected via two unidirectional conveyor belts that deliver one piece at a
time. Several levers/rods move the object between the conveyor belt and the units.

In order to model the system, we defined atomic actions for each component. Table 5 summarizes some
parameterized behavioral-actions used to specify the system (see appendix for the detailed system model).
The synthesized strategy specifies conditions with corresponding parameters about when to execute these
actions. Our generated behavioral-level code (a file with roughly 500 lines including automatic indenting
and comments) is easy to read. We use a script to perform translation from generated strategy to executable
(each behavioral-action maps to a sequence of machine instructions). Table 2 summarizes the synthesis
times for different testcases (see appendix for a detailed description). E.g., for Testcase 4b in Table 2, the
standard encoding needs a total number of 593× 2 variables, while with optimizations we only use 60× 2

10http://www.festo-didactic.com/int-en/learning-systems/mps-the-modular-production-system/
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Processing Unit Storage Unit

Conveyor belt

Conveyor belt

Figure 5: A demonstrator setup of the FESTO modular production system.

Table 5: Actions defined in the PDDL domain of a FESTO MPS system
Action Parameter - Type Intuitive meaning Change
robot-move ?pos1 ?pos2 - robotposition robot arm moves from ?pos1 to ?pos2 Sys⇒ Sys
robot-pick ?gri - gripper robot arm ?gri picks object ?obj Sys⇒ Sys

?pos - robotposition, ?obj - object (both at position ?pos)
robot-check ?pos - robotposition trigger sensor to check if ?pos is occupied Sys⇒ Env
return-check ?pos - robotposition return whether position ?pos is occupied Env⇒ Sys
robot-drop ?gri - gripper robot arm ?gri drops object ?obj Sys⇒ Sys

?pos - robotposition, ?obj - object (both at position ?pos)
belt-move ?obj - object, belt transfers object ?obj from Sys⇒ Sys

?pos1 ?pos2 - beltposition ?pos1 to ?pos2
drill-in ?obj - object, ?pos - plateposition drill (at position ?pos) drills the object Sys⇒ Sys
plate-rotate ?obj1 . . . ?obj6 - object rotate the plate to move the object Sys⇒ Sys

?pos1 . . . ?pos6 - ?plateposition
rod-push ?obj - object push the rod located between Sys⇒ Sys

?pos1 ?pos2 - (robotposition, ?pos1 and ?pos2 to change the
beltposition, plateposition) position of object ?obj

trigger-color- ?obj - object trigger the color sensor located at ?pos Sys⇒ Env
sensor ?pos - (robotposition, beltposition, plateposition)
return-color- ?color - colortype ?obj - object return the color value ?color when Env⇒ Sys
value ?pos - (robotposition, beltposition, plateposition) the color sensor located at
trigger-form- ?obj - object trigger the shape-detector located at ?pos Sys⇒ Env
sensor ?pos - (robotposition, beltposition, plateposition)
return-form- ?form - formtype ?obj - object return the shape ?form when the Env⇒ Sys
value ?pos - (robotposition, beltposition, plateposition) shape-detector located at ?pos is on

variables.

6 Related Work
We briefly compare our results with existing work in local game solving, planning in artificial intelligence,
and LTL synthesis.

Our key insight is to perform faster synthesis by solving games locally. The concept of local game
solving was largely used in parity or winning conditions with known complexity at least P∩co-NP [12, 22].
Our concept to view program optimization as techniques for local game solving is new, and our focus is only
to solve games with strategy finding in polynomial time, as when encountering large examples, we need
to solve games symbolically. Related to our work is also work that aims to optimized the size of a SAT
formula, e.g., Marinov et al. [20] use program optimization techniques to efficiently encode verification
problem from the Alloy Analyzer. We use different optimization techniques and focus on the synthesis
setting, which allows us to extract information directly from the specification.

In artificial intelligence, we can view the concept of synthesis as part of the nondeterministic planning
(see an early Dagstuhl report [17] for their relations). PDDL-based tools such as seq-opt-gamer [18] or
MBP [4] also use symbolic techniques to solve nondeterministic planning problems. However, to the best
of our knowledge these tools do not support games with complex winning conditions (e.g., GR(1)). Fur-
thermore, our program optimization scheme enables to scale to larger examples (see Table 3). ALisp [21]
also performs synthesis by letting a user specify non-determinism over choices, but its strategy finding is
based on machine learning.
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There has been a lot of recent work on LTL synthesis [24, 8, 10, 23, 9, 5]. We use LTL synthesis
techniques underneath but we focus on using a language that is easier to use. In addition, our optimization
techniques can be applied as preprocessing step as shown in Section 4.4.

The tool implementation used in this paper is based on an early version of our tool [7] that could already
translate PDDL with game extensions to symbolic game. The original purpose of the earlier version was
to bridge between the AI and the verification community. However, we found the concept very powerful
for system-level modeling and synthesis. The previous version was very basic: (i) it supported only reach-
ability games, (ii) useful constructs such as typing and conditional effects were not included, and (iii) it
used none of the presented optimization techniques, which made it very inefficient even for medium-size
examples.

7 Summary and Future Work
We summarize the main contribution in our paper.

• For the ease of behavioral-level synthesis, we reinterpret PDDL to model games and reactive system
design.

• To increase the speed of synthesis, we use program optimization techniques to solve games locally
with high efficiency. These techniques can be used as a preprocessing step in any LTL synthesis tool.

• The concept is implemented as an extension of the GAVS+ tool, and we automatically synthesize
and deploy programs for a control automation system.

In our ongoing work we aim to synthesize controllers with optimality criterion. E.g., it would be in-
teresting to use sketching techniques [25] to parallelize or distribute the generated program to achieve
improved performance. We are currently implementing an extension that allows us to assign finite costs
to actions. Finally, in order to increase the speed of synthesis, we aim to (i) study how to develop more
general program optimization techniques and (ii) replaced our Java-based BDD engine with native C im-
plementation.
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programs. In Proceedings of the 2005 ACM SIGPLAN conference on Programming language design
and implementation (PLDI’05), pages 281–294. ACM, 2005. 7

14/21 Verimag Research Report no TR-2011-12



Optimizations for Game-based Software Synthesis Cheng et al.

<domain> := (define (domain <name>)
[<extension-def>]
[<require-def>]
[<constants-def>]
[<predicate-def>]
<action-def>*)

<extension-def> := (:extends <domain-name>)
<require-def> := (:requirements <require-key>+)
<constants-def> := (:constants <name>+)
<predicates-def> := (:predicates <atomic formula skeleton>+)
<atomic formula skeleton> := (<predicate> <variable>*)
<predicate> := <name>
<variable> := ?<name>
<name> := identifier
<require-key> := Follow Table 5.1

<action-def> := (:action <action functor>
:parameters ( <variable>* )
<action-def body>)

<action functor> := <name>
<action-def body> := :precondition <goal description> :effect <effect>
<goal description> := (and <goal description>*) | (not <goal description>)

| (not <goal description>) | <literal(term)>
<literal(t)> := <atomic formula(t)>

| (not <atomic formula(t)>)
<atomic formula(t)> := (<predicate> t*)
<term> := <name> | <variable>
<effect> := (and <effect>*) | <atomic formula(term)>

| (not <atomic formula(term)>) | (when <goal description> <effect>)

Figure 6: Extended BNF for the domain in PDDL (partially modified from [13]).

A Appendix A: PDDL Syntax
As the entire PDDL language is too broad for processing, we focus on a small portion of PDDL (which
we refer it as core PDDL) which is commonly seen from our collected examples11. Table 6 summarizes
the result, where requirements represent subsets of features categorized in PDDL. For the ease of explana-
tion, we omit typing in all of our definitions (while it is implemented). For details concerning the PDDL
language, we refer interested readers to [13, 11] for a full-blown manual.

Definition 1 (PDDL domain: Syntax [13]) Define the Extended BNF12 for a domain in PDDL by con-
tents in Figure 6. Lines starting with characters ";" are comments.

Definition 2 (PDDL problem: Syntax [13]) Define the Extended BNF for a problem in (core) PDDL us-
ing contents in Figure 7 (for items defined previously in Definition 1, it is not defined repeatedly). We use the

11PDDL is designed with the anticipation that only a few planners will handle the entire PDDL language [13].
12In Extended BNF form [13], symbol "*" represents zero or more elements, symbol "+" represents at least one element, symbol

"|" represents or, and objects enclosed in square brackets are optional fields.

Table 6: Requirements supported in our implementation. Descriptions of each requirement are from the
PDDL tutorial [13] and the PDDL4J library [2]

Requirement Description Supported?
:strips Basic STRIPS-style. Supported1

:negative-preconditions Allows not in goal and Supported
preconditions descriptions.

:disjunctive-preconditions Allows or in goal and Supported
preconditions descriptions.

:equality Supports = as built-in predicate. Supported
:conditional-effects Allows when in action effects Supported
:typing Allows type names in declaration Supported

of variables.
:safety Allows :safety conditions not supported

for a domain. in PDDL4J23

1 Currently quantification over objects is not supported for simplicity issues. Users may rewrite the quantification by
enumerating concrete objects in the problem. Also, we only support predicates with two parameters.

2 We use (and extend) PDDL4J as our front-end language parser.
3 In our implementation the user may specify safety constraints.
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<problem> := (define (problem <name>)
(:domain <name>)

[<require-def>]
[<object declaration>]
[<init>]
<goal>)

<object declaration> := (:objects <name>+)
<init> := (:init <literal(name)>+)
<goal> := (:goal <goal description>)

Figure 7: Extended BNF for the problem in PDDL (partially modified from [13]).

<goal> field to store reachability, safety and Büchi conditions, and for generalized reactivity conditions
they are offered to the synthesis engine as additional input.

B Appendix B: Evaluation
In this section, we compare our work with others together with a preliminary evaluation over our imple-
mentation. Results are collected from an Intel 3.0 Ghz Machine (with 4GB RAM). For GAVS+, we allocate
3000MB memory for the Java Virtual Machine.

B.1 Effect of variable reduction (subarena creation)
We first give a general evaluation concerning the improvement by our preprocessing. Table 1 (see main
text) summarizes the performance measure on the classic example of Hanoi tower. We have also listed
the result of the built-in GraphPlan algorithm [6] (a classic algorithm in AI planning) implemented in
PDDL4J [2]. Under the preprocessing, we are able to solve more complex problems within reasonable
amount of time. GraphPlan algorithm scales badly.

B.2 Plan Generation
We continue our evaluation by comparing our implementation with other tools. For this we have taken
PDDL planners from the International Planning Competition (IPC’11). We have downloaded planners
with executables available for download, namely seq-opt-gamer13 [18] and FastDownward [15]14.

Examples in our benchmark suite are either from the PDDL4J library or from the planning competi-
tion15.

• (LOGISTICS from PDDL4J) In this domain a set of trucks, airplanes, airports are located at different
cities. The goal is to find a plan of transportation to send passengers/goods to desired destinations.

• (BARMAN from IPC’11) The following description is from the IPC’11 website: In this domain there
is a robot barman that manipulates drink dispensers, glasses and a shaker. The goal is to find a plan
of the robot’s actions that serves a desired set of drinks. In this domain deletes of actions encode
relevant knowledge given that robot hands can only grasp one object at a time and given that glasses
need to be empty and clean to be filled.

• (VISIT-ALL from IPC’11) In this domain, a robot tries to traverse through all terrains, where con-
nections between terrains are set as constraints.

• (GRIPPER from PDDL4J) In this domain, a robot with a specified number of arms is located in a
room. The robot contains several predefined actions such as pick-object, place-object, or
move. The goal is distribute objects to the their destinations.

13It won the first place in the 2008 international planning competition (sequential optimization track). Also, it uses CUDD [1] for
symbolic manipulation.

14FastDownward is now used by many teams as the initiative for attending the planning competition. It includes many algorithms
prebuilt.

15Examples are directly taken from the repository. We remove the cost function in the Barman example, so all planners work on
actions with unit cost.
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Our implementation (Java-based, using JDD as our BDD package) is comparable with other imple-
mentations despite the implemented language. On larger examples, GAVS+ outperforms on BARMAN
and VISIT-ALL domains, while results vary on the LOGISTICS and GRIPPER domain16. We are unable to
win against all examples, partly because for some benchmarks, the effect of binary-encoding is not strong
enough. Notice that using SAT or SMT solvers rather than BDD may achieve better performance. Nev-
ertheless, our purpose is to have an idea concerning the compactness of our encoding for the use of game
solving, and we view this result only as an additional benefit.

B.3 Game Solving (A): the FESTO MPS System

In this section, we describe our demonstrator from FESTO MPS (Modular Production System) for control
automation. MPS is mostly used for teaching purposes, but is a very good approximation for a real indus-
trial automation process. Each unit of the MPS processes small colored work pieces that are made out of
plastic or metal. Our demonstrator setup (see Figure 5) is composed of two modules, a processing unit and
a storage unit.

• The processing unit is built up from a rotating plate with 6 locations, a height probe sensor (which
tests the shape of work pieces) and a drilling module (which processes the work pieces).

• The storage unit contains a robot arm used to store and retrieve the object to/from a three-layer rack
with six storage locations each.

• Both units are connected over two unidirectional conveyor belts that can deliver one work piece at a
time.

• Several levers/rods are allocated on certain positions to move the object between the conveyor belt
and the units.

MPS units are usually controlled by PLCs that are directly attached to the units. However, in our
demonstrator setup, a global control was needed to execute the generated plan. For this purpose, we
wrote a program that interfaces with the FESTO FEC PLCs over Ethernet (UDP/IP) and modified the PLC
programs so that every atomic action of the plan can be triggered individually. Since the Siemens LOGO!
conveyor belt controllers are attached separately and do not have an appropriate communication interface,
we furthermore added a microcontroller that translates incoming requests from the global control over
serial bus (RS232) to simple commands sent to the conveyor belt controllers over their digital input ports
and modified the conveyor belt control programs accordingly.

Finally, we designed an automatic script-based process that translates the solution generated from
GAVS+ to a C++ program that can be executed on a PC or laptop and acts as global control. The pro-
gram is linked against a library that implements sending the control codes for each of the atomic operations
to the PLCs or the microcontroller. This approach can hence be seen as an interpreter for the solutions
generated by GAVS+.

We have created an abstract system configuration (see Figure 8 for components and topology), then tried
to model components of each module (together with their predefined actions) using our game extension of
PDDL. Table 7 and 8 summarize some predicates and parameterized actions used to specify the system.
We then try to specify various specifications and synthesize controllers (in sequentialized-reactive form).
Results are in Table 2 (see main text).

1. Our simplest setting is to move an object from position P1 to the rack. In this example we modify
the domain to disable all sensor actions, so it amounts to forward reachability analysis. As the belt
moving is only unidirectional (e.g., from P1 to P5), the generated action sequence has 14 steps
consisting (a) belt-moving, (b) plate-rotating, and (c) robot-arm processing. The processing time is
1.216 seconds.

16Here we list two results: one with FORCE heuristic and the other without; we have an implementation where we tune our
heuristic scheme to invoke FORCE when appropriate.
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Figure 8: The FESTO MPS demonstrator setup in abstract form.

Table 7: Predicates defined in the PDDL domain of a FESTO MPS system
Predicate Parameter - Type Intuitive meaning
in-robot ?pos - robotposition robot arm is in ?pos
at ?obj - object object ?obj is at position ?pos

?pos - (robotposition, beltposition, plateposition)
free-hand ?gri - gripper gripper ?gri has no object
carry ?obj - object, ?gri - gripper gripper ?gri carries object ?obj
belt-connected ?pos1, ?pos2 - beltposition transmission belt connected

between ?pos1 and ?pos2
rod-located ?pos1, ?pos2 - (robotposition, rod can push from ?pos1 to ?pos2

beltposition, plateposition)
next ?pos1, ?pos2 - plateposition an object on the plate will move

from ?pos1 to the next position
?pos2 when rotating clockwise

drill-position ?pos - plateposition drill is at position ?pos
have-color-sensor ?pos - (robotposition, beltposition, plateposition) color sensor is at ?pos
color-sensor-on ?pos - (robotposition, beltposition, plateposition) color sensor at ?pos is on
color ?obj - object, ?col - colortype object ?obj has color ?col
have-form-sensor ?pos - (robotposition, beltposition, plateposition) form sensor is at ?pos
form-sensor-on ?pos - (robotposition, beltposition, plateposition) form sensor at ?pos is on
form ?obj - object, ?form - formtype object ?obj has shape ?form
P0TRAN none system or environment’s move

2. Our second setting is to drill an object and store it on the rack based on the color. Initially the
color value is unknown, and shall only be known when triggering the color sensor. Thus in our goal
specification, we add an additional constraint specifying that an object shall be of color white, red,
or black. Our engine creates sequentialized reactive code-blocks in 30.417 seconds.

3. Our third setting is to modify from 2, and it is required that an object shall only be drilled when it
is facing up (formtype: up). When it is placed down, then it shall be returned to position P1 back
to the operator. Currently the engine run out of time (> 500 seconds) when executing such setting.
Nevertheless,

(a) When removing one color and one layer of storage, the engine synthesizes the code in 29.932
seconds.

(b) When restricting each layer to only two storage positions, the engine synthesizes the code
in 86.341 seconds.

(c) When restricting each layer to only three storage positions, the engine synthesizes the code
in 97.473 seconds.
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Table 8: Actions defined in the PDDL domain of a FESTO MPS system
Action Parameter - Type Intuitive meaning Change
robot-move ?pos1 ?pos2 - robotposition robot arm moves from ?pos1 to ?pos2 Sys⇒ Sys
robot-pick ?gri - gripper robot arm ?gri picks object ?obj Sys⇒ Sys

?pos - robotposition, ?obj - object (both at position ?pos)
robot-check ?pos - robotposition trigger sensor to check if ?pos is occupied Sys⇒ Env
return-check ?pos - robotposition return whether position ?pos is occupied Env⇒ Sys
robot-drop ?gri - gripper robot arm ?gri drops object ?obj Sys⇒ Sys

?pos - robotposition, ?obj - object (both at position ?pos)
belt-move ?obj - object, belt transfers object ?obj from Sys⇒ Sys

?pos1 ?pos2 - beltposition ?pos1 to ?pos2
drill-in ?obj - object, ?pos - plateposition drill located at position Sys⇒ Sys

?pos drills the object
plate-rotate ?obj1 ... ?obj6 - object rotate the plate to move the object Sys⇒ Sys

?pos1 ... ?pos6 - ?plateposition
rod-push ?obj - object push the rod located between Sys⇒ Sys

?pos1 ?pos2 - (robotposition, ?pos1 and ?pos2 to change the
beltposition, plateposition) position of object ?obj

trigger-color- ?obj - object trigger the color sensor located at ?pos Sys⇒ Env
sensor ?pos - (robotposition, beltposition,

plateposition)
return-color- ?color - colortype ?obj - object return the color value ?color when Env⇒ Sys
value ?pos - (robotposition, beltposition, the color sensor located at

plateposition) ?pos is on
trigger-form- ?obj - object trigger the shape-detector located at ?pos Sys⇒ Env
sensor ?pos - (robotposition, beltposition,

plateposition)
return-form- ?form - formtype ?obj - object return the shape ?form when the Env⇒ Sys
value ?pos - (robotposition, beltposition, shape-detector located at ?pos is on

plateposition)

4. The last setting is to modify from 3, and use the object detection sensor to detect whether the rack is
full. If it is full, then return object to position P1 back to the operator.

(a) When removing one color and one layer while restricting each remaining layer to only two
storage positions, the engine synthesizes the code in 231.214 seconds.

(b) When removing one color and one layer while restricting each remaining layer to only three
storage positions, the engine synthesizes the code in 420.061 seconds.

(c) When restricting each layer to only three storage positions while maintaining three colors, the
engine runs out of time (> 500 seconds).

B.4 Game Solving (B): Other Examples
Table 9 summarizes the performance of our synthesis engine on other selected benchmark suites.

• (ROBOTPLANNING modified from MBP [4]) In this domain, a robot is placed in a house with
many rooms. The goal varies from simple reachability to repeatedly visit several rooms (general-
ized Büchi). We also experiment coordination within two robots: the goal is that two robots shall
never be in the same room, and in our synthesis framework, we let one robot perform its move freely
while the other shall win the safety game.

• (GRIPPER from PDDL4J) In this domain, we model the error of the robot arm, and the purpose is to
achieve goal-oriented behavior.

• (ELEVATOR from [23]) In this domain, the request of the user is modeled, and the goal is a GR(1)
specification indicating that request shall be responded. See the original paper [23] for details.

• (MODELTRAIN) Lastly, we try to extract from the example shown in Figure 9 a PDDL model for a
train system. In this setting, we model the controller with the ability to raise the red light (enforce
the train to stop) and to perform change over switches.

– To create precise modeling over interactions between the train and the track, we have performed
case split to partition the set of all tracks into three categories, i.e., in Figure 9 the yellow
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Table 9: Experimental results (seconds)
Problem Execution TimeR Remark
MBP pb1 0.401 reachability
MBP pb1 1.4 Büchi
MBP pb1 0.399 GR(1)
MBP pb2 6.45 Safety
MBP pb3 7.435 Safety
Gripper pb1 1.48 reachability
Gripper pb2 2.785 reachability
Gripper pb3 6.529 reachability
Gripper pb4 17.963 reachability
Elevator pb1 6.421 GR(1), 8 floors
Elevator pb2 15.557 GR(1), 16 floors
Elevator pb3 31.67 GR(1), 24 floors
Train pb1 1.163 Simple derail prevention (safety)
Train pb2 15.538 Repeated visit (generalized Büchi)
Train pb3 16.616 Collision avoidance (reachability+safety)
R Total time includes game creation, game solving, and strategy print-out. No optimization (e.g., vari-

able ordering, sequentialize strategy) is used.

rectangle (seg), the red circle (splitsegP1), and the mesh rectangle (splitsegP2). For
example, when a train is on splitsegP2 moving towards splitsegP1, it suffers from
derailing when two segments are not connected by switch and when no light signal is on to
stop the train.

– The goal is either to perform repeated traversal, to avoid derailing, or to avoid collision (i.e.,
two trains are never within the same track during their service to destinations).

– We have also experimented our variable reduction techniques under the extension of conditional
effects. In this domain, this enables to further reduce the number of declared variables by 30%.
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Figure 9: The model train system setup (up) and screenshot of its actual execution (down).
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