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Abstract—This paper introduces a new vision based controller
that uses the entries of a homography matrix to control a highly
maneuverable mobile robot. It aims to reduce the sensitivity of the
control to calibration errors through connection of the perception
and control in the data space of the sensor. The control law is
formulated in a way that it is only dependent on features of
the current image without measuring or calculating any position
in the Cartesian space. Only the target image must be known
and the target position should be estimated relatively to the
feature plane. An evaluation of the robustness of the controller
is presented and verified by simulation.

I. INTRODUCTION

Vision based control techniques have been research topic
for over 40 years [1], whereas the basic principle is the
use of visual information in the feedback loop to complete
positioning or navigation tasks [2]. It is a crossover between
image processing and control theory and therefore the charac-
teristics of the visual sensor and of the robot have to be taken
concurrently into consideration when designing the vision
based control scheme.Good surveys about vision based control
or also called visual servoing can be found e.g. in [1], [3].
There are two basic classes of visual servoing schemes namely
image-based visual servoing [4] and position-based visual
servoing [5]. Image-based visual servoing is also called 2D
visual servoing, since the task is expressed directly in the
image space by describing the control law e.g. in dependence
of 2D feature points.
Contrary to that, the position-based visual servoing or 3D
visual servoing formulates the control task in Cartesian coor-
dinates. The pose is estimated by the essential matrix, whereas
the target must not be planar and the motion between the two
images must not be a pure rotation [6].
Additionally, combinations of image-based and position-based
visual servoing, so called 2.5D visual servoing, were proposed
e.g. in [7]. The task function contains variables in the Cartesian
space as well as in the image space to overcome shortcomings
and use strengths of both visual servoing types.
Vision based control techniques have the potential to be
used for a robust, direct, reactive control, as the position is
measured directly without building an environment map by
data accumulation first and then localizing itself. Nevertheless,
even the control law of the standard 2D approach requires the
depth values, z in camera direction, of the features, which

impairs the direct use of the sensor. One solution for a vision
based control scheme without estimating or measuring the
depth value is the use of a homography matrix [8], which
is explained in detail in Section 2.
In [9] vision-based car platooning, i.e. an autonomous vehicle
following a leading vehicle, is realized by tracking the back of
the leading vehicle and calculating the homography matrix to
match a target picture, which was taken by a camera located
directly behind the leading vehicle. After the calculation
the homography matrix is decomposed in order to get the
respective translation and rotation. Hence, the control task
itself is then described in Cartesian coordinates.
A control scheme that tries to completely relinquish Cartesian
variables in the control law is proposed in [10], where they
try to control the entries of the homography matrix directly to
increase the robustness and decrease the computational effort.
This is not possible for all motion primitives and hence a
decomposition of the homography matrix has to be executed
for certain trajectories.
In this paper, we want to propose a direct homography based
control method for a highly maneuverable vehicle as described
in [11]. The special kinematics together with a well chosen
control-interface support an advantageously structured map-
ping of the entries of the homography matrix into the control
space. The robot can be controlled only by measurements in
the image space without neither any online measurements or
estimations in the Cartesian space nor a decomposition of the
homography matrix.
After deriving the control law in Section 2, the robustness
of the controller is evaluated in Section 3. Simulation results
are presented in Section 4, before conclusions are drawn in
Section 5.

II. DIRECT HOMOGRAPHY CONTROL

In this Chapter the homography matrix is described in detail
and how it is utilized via decomposition. After that a control
method that directly sets the entries is derived together with a
simplification for highly maneuverable vehicles. From those
tools the controller structure is deduced and the analytical
solution is discussed.
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A. Homography Matrix

The motion of the camera can be reconstructed from two
views if enough matching feature points can be found in both
images. The standard eight-point algorithm for calculating the
rotation R and translation t from the essential matrix can only
be applied to generally distributed feature points, which means
that they must not lie on a planar surface [6]. For the planar
case the reconstruction must be done by homography. Figure
1 depicts the basic principle with the camera starting at pose
o1 and being moved by rotation R and translation t to the pose
o2. The plane P is at least partially visible from both poses
and a feature point p ∈ P is projected into the image plane
of o1 as m1 and into the image plane of o2 as m2.

Let m̂1, m̂2 be the unscaled 3D coordinates of p in the
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Fig. 1. Homography Principle

respective camera frames, hence the transformation between
the two systems is:

m̂2 = Rm̂1 + t (1)

Let n ∈ <3 be the unit normal vector to plane P expressed in
the reference frame o1 and d > 0 the distance from P to the
optical center of the camera pose o1.

nT m̂1 = d (2)

Reformulating (2) and combining it with (1) leads to:

m̂2 = Rm̂1 + t
1

d
nT m̂1 ⇔ m̂2 = (R+

1

d
tnT )m̂1 (3)

Since the translation t is scaled by the distance d, the homog-
raphy matrix expresses the relation between both projected
points up to a scaling with λimi = m̂i, i ∈ 1, 2:

m2 ≈ Hm1 (4)

If there are more than four feature correspondences, whereas
no more than 3 points are collinear, the homography matrix
can be calculated and the scaling can be determined, see
Lemma 5.18 and Algorithm 5.2 in [6].
By calculating a matrix only from the 2D images points it is
possible to receive an implicit representation of the 3D motion.
The standard method to explicitly calculate the 3D motion is

the decomposition of the homography matrix, see e.g. [9]. The
decomposition has a high computational effort consisting of
several steps and provides not an unique but four solutions, of
which two can be canceled out directly since they do not meet
the positive depth constraint of a physically possible solution.
Different techniques exist to choose one solution from the two
remaining by e.g. estimating the real normal vector [12].

B. Direct Jacobian Control

Even though efficient decomposition methods exist a con-
troller settled in the Cartesian space is still dependent on an
abstracted sensor signal. Noise and errors in the measurements
will be increased by the decomposition. A more robust and
more efficient way is to work directly in the image space,
whereas the aim is to control the entries of the homography
and therefore the pose of the mobile robot.
The first step is to calculate a Jacobian matrix J to see how
changes of the position effect the entries of H .

ḣ = Jξ̇ (5)

Whereas h are the entries of H stacked to a vector:

h = [h11 h12 h13 h21 h22 h23 h31 h32 h33]T (6)

The state vector ξ consists here of the position deviation
between current pose and goal pose expressed in the current
camera coordinate system. Depending on the state vector ξ the
Jacobian could get very complicated, but the goal here is to
control a mobile robot. Consequently, the translation can be
limited to the ground plane, which is denoted by the x, z plane
of the camera, and only rotations around the y axis pointing
up in the camera coordinate system are possible. With those
restrictions the homography matrix simplifies to:

H =

 cos(α) + t1n1

d
t1n2

d sin(α) + t1n3

d
t2n1

d
t2n2

d + 1 t2n3

d
−sin(α) + t3n1

d
t3n2

d cos(α) + t3n3

d

 (7)

Here ni are the components of the normal vector n, ti the
entries of the translation vector t, and α is the angle of rotation
R.
The control interface ξ̇ of the highly maneuverable vehicle
consists of the velocities vx, vy and the yaw rate ψ̇. Those
values are described in the vehicle’s coordinate system, but,
if it is assumed that there is no translational displacement be-
tween the coordinate systems, they could easily be transfered
to the camera’s coordinate system and the following relations
hold:

ṫ1 = −vy
ṫ3 = vx
α̇ = ψ̇

(8)

Since all other variables of (7) are static and not controllable,
their time derivatives are zero. Calculating the time derivate
of (7) and using (6) and (8), Equation (5) becomes:
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ḣ =



0 −n1

d −sin(α)
0 −n2

d 0
0 −n3

d cos(α)
0 0 0
0 0 0
0 0 0
n1

d 0 −cos(α)
n2

d 0 0
n3

d 0 −sin(α)


[vxvyψ̇]T (9)

This Jacobian matrix allows now a direct control of the entries
of the homography matrix, as far as this is possible with the
described mobile. Here it is clearly visible that d, as mentioned
above, does not have to be known and an up-to-scale control
is possible.
The ideal Jacobian would be a diagonal matrix with entries not
close to zero, which means that the system is decoupled and
well observable. Even though this is not the case in general
here, different simplifications of J can apply in dependence
of n. It seems that vx and vy can be directly calculated
from h12 and h32, but n2 is very likely to be zero, since
most plane surfaces in reality are perpendicular to the ground
plane. Nevertheless, if n2 is sufficiently large, this should be
exploited.
Moreover, if the camera is oriented perpendicular to the
target plane the rotation and the translation can be directly
read out from the homography matrix, since a normal vector
n ∈ {[1 0 0], [0 0 1]} simplifies H even further. This could
also be kept in mind when designing artificial target poses.

C. Closing the control loop

Now that the relation between the vehicle’s control interface
and the homography matrix is known, it can be utilized to set
up the control loop, which is depicted in Figure 2. The control
goal here is to move the mobile robot exactly to the pose of the
goal image, therefore the desired homography matrix equals
the identity matrix H∗ = I , as easily can be seen from (3).
The deviation ∆h of the current homography matrix H to

h∗

h

∆h
C

∆xJ̄
ξ̇ 1

s

ξ

K

Fig. 2. Control Structure

I is the input to the control part, which is composed by J̄
and C and is discussed later in detail. Here the controller C
is placed after J̄ to control the different motion components
(rotation and translations) independently.
The Jacobian J of the preceding Section maps the vehicle’s
motion to the homography entries, but this control loop
requires right the inverse transformation from ḣ to ẋ. Although

this can be obviously achieved by inverting J , it is not prefer-
able, since J is not quadratic, which requires the calculation of
a pseudo-inverse. An analytic calculation of ẋ in dependence
of ḣ is the more accurate and efficient choice.
For the remainder of this paper we will consider the realistic
case with n1 6= 0, n2 = 0, and n3 6= 0. Obviously, not all
equations of (9) are equally suitable, because no information
is contained in h21, h22, and h23. As written above h12, h32 are
also not always a good choice. With the four equally suitable
equations h11, h13, h31, and h33 there are the following four
possibilities to calculate the vehicle’s motion demand:

(I.) h11, h13, h33 :

v̇x = d(h13n1sin(α)+h33n1cos(α))−dn3(h11sin(α)−h33sin(α))
n3(n1cos(α)+n3sin(α))

v̇y = −d(h11cos(α)+h13sin(α))
n1cos(α)+n3sin(α)

α̇ = −h11n3+h13n1

n1cos(α)+n3sin(α)

(II.) h11, h13, h31 :

v̇x = d(h31n3sin(α)−h11n3cos(α))+dn1(h13cos(α)+h31cos(α))
n1(n1cos(α)+n3sin(α))

v̇y = −d(h11cos(α)+h13sin(α))
n1cos(α)+n3sin(α)

α̇ = −h11n3+h13n1

n1cos(α)+n3sin(α)

(III.) h11, h31, h33 :

v̇x = d(h33cos(α)−h31sin(α))
n3cos(α)−n1sin(α)

v̇y = d(h31n3sin(α)−h11n3cos(α))+dn1(h11sin(α)−h33sin(α))
n1(n3cos(α)−n1sin(α))

α̇ = −h31n3+h33n1

n3cos(α)−n1sin(α)

(IV.) h13, h31, h33 :

v̇x = d(h33cos(α)−h31sin(α))
n3cos(α)−n1sin(α)

v̇y = d(h13n1sin(α)+h33n1cos(α))−dn3(h13cos(α)+h31cos(α))
n3(n3cos(α)−n1sin(α))

α̇ = −h31n3+h33n1

n3cos(α)−n1sin(α)
(10)

The existence of four different calculation possibilities has
two advantages. First if n3cos(α)−n1sin(α) = 0 the formulas
with the other denominator can be used and vice versa. Second
the calculation of vx, vy , and α̇ by different formulas and by
using all four homography entries increases the robustness.
Moreover, Equation (10) shows clearly that even with an
unknown distance d from the goal pose to the feature plane
P the direction of the translation is computable up to scale,
whereas the rotation, as expected, is completely unaffected.
The mapping K of the current states x to the homography
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matrix H can be deduced directly from (7) and has to be
examined for the stability evaluation in the next chapter.

III. STABILITY EVALUATION

The first choice in the design of the controller is whether
to establish one gain c for all three state variables or to set
different gains. Since the controller C is placed in the control
loop after J̄ , the state variables are decoupled and the gains
can be individually adapted. The velocities vx, vy have similar
characteristics, so it is sufficient to apply the same gain c1 for
their control, while an extra gain c2 is used for the control of
the orientation.
For the evaluation of the stability the results from the preced-
ing Chapter are utilized to calculate the control inputs by only
three terms of the Homography Jacobian (9) - here solution
(IV.) from (10), namely h13, h31, and h33. First the control
loop is cut at ẋ in order to compute the system matrix A
with ẋ = Ax. The non-linear function block K maps the
state variables to the entries of the homography matrix. As
the redundant Jacobian is reduced, K also reduces to:

h13 = −y·n3

d + sin(α)

h31 = x·n1

d − sin(α)

h33 = x·n3

d + cos(α)

(11)

Those equations are linearized and the linearized mapping K̄
can be written as: ∆h13

∆h31
∆h33

 =

 0 −n3

d cos(α0)
n1

d 0 −cos(α0)
n3

d 0 −sin(α0)

 ∆x
∆y
∆α

 (12)

From this point the linearized model will be used and the ∆
will not be written in front of the terms. The linearization is
around the current rotational angle α0. With the linearized K̄
and the reduced Jacobi J̄ the state matrix A = C · J̄ · K̄ can
be calculated:

ξ̇ =

c1 0 −c1 d sin(α0−αs)
(n3cos(αs)−n1sin(αs)

0 c1 −c1 d n1sin(α0−αs)
n3(n3cos(αs)−n1sin(αs))

0 0 c2
n3cos(α0)−n1sin(α0)
n3cos(αs)−n1sin(αs)

)

 ξ (13)

The reason why two different α appear in Equation (13) is
that αs, which is the α from J̄ - see (10), is only an estimated
or measured value of α, while α0 is the real physical value
that does not have to be known as it is implicitly used in K̄.
If α0 is perfectly observable, thus αs = α0, the state matrix
A becomes diagonal and identical to C.
Nevertheless, measuring this Cartesian value would be against
the principle of an only image based feedback. For the
controller design the fixed value αs = 0 is chosen to establish
an exacter control the nearer the vehicles comes to the target
orientation and to ensure a correct positioning.
The design choice is applied A αs=0→ Â and the characteristic

polynomial p of the system is calculated:

p = det(sI − Â)

= (s− c1)2 · (s− c2(−n1

n3
· sin(α) + cos(α)))

(14)

It can easily be seen that c1 has to be chosen smaller than
zero for a stable double root, whereas c2 has to be examined
more closely.
Theorem 1: While regarding the visibility constraint d > 0,
the gain c2 must be chosen smaller than zero, as the following
expression holds:

−n1
n3
· sin(α) + cos(α) > 0 (15)

Proof 1: Let γ be the angle between the optical center o1 of
the camera at the goal position and the normal n vector to the
plane P - see Figure 3. The angle γ is limited to the following
value range:

γ ∈]0, π[ (16)

For γ = 0 and γ = π the normal vector n lies in the image
plane and for γ > π or γ < 0 the homography condition
d > 0 is hurt.
Due to the same restrictions the angle α, which denotes the
rotation around y∗c = yc between the current camera pose and
the goal pose, must fulfill:

0 < γ − α < π (17)

Additionally, as n is expressed in the target camera’s coordi-
nate system, the following relation holds:

n1 = cosγ
n3 = sinγ

(18)

Multiplying Equation (15) with n1 and inserting (18) yields:

sin(γ) · cos(α)− cos(γ) · sin(α) > 0 (19)

Using the sine subtraction theorem on (19) provides:

sin(γ − α) > 0 (20)

The sine is greater zero in the range described in (17) and
therefore Equation (15) is true for the visibility condition d >
0. This is a very interesting result, because it means that strong
errors of n can be handled as long as the system is far enough
from the boundaries of Condition (17).

IV. RESULTS

In order to verify the theory from the preceding Chapters, a
test scenario, depicted in Figure 4, is set up in simulation. For
an easier understanding a world coordinate system xW , yW
is introduced and the camera pose is expressed in the world
coordinate system by its [x, y, ψ] tuple.
Different starting poses and goal poses were tested, but here
only one scenario is presented, for which the goal pose is
set to [2, 2, 0], the initial pose is [−4,−4, π4 ], and the chosen
plain equation P is x+ y − 10 = 0. Those conditions lead to
a normal vector n = [−

√
0.5, 0,

√
0.5] and distance d =

√
18.
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Fig. 3. Visibility Restriction

The camera model, which projects the 3D features pi ∈ P
to 2D features mi in the image space, uses real calibration
parameters for focal length, pixel scale factors, and principal
point. The focus of the simulation was laid on the sensor
side and hence simple vehicle dynamics are implemented
in accordance with the control interface described in the
preceding Chapters. Nevertheless, actuator saturations are set
up to limit vx,vy and ψ̇.
In this simulation environment noise can be added to the 2D
feature points as a multiplicative value or as a pixel offset
range. Additionally, the normal n and distance d could be
multiplied with a noise term.

P
n

d

x∗c

z∗c

xw

yw
pi

xc

zc

ψ̇

vx + vy

Fig. 4. Simulated Scenario

A. Robustness against Errors of n

This first experiment should test the robustness of the
normal vector n, which has to be estimated once for the
goal pose, against errors. To add noise the normal vector
is multiplied with a random value νn between 0.6 and 1.4.
Hereby, n1 and n3 have to be multiplied with different random
values or otherwise the disturbance will cancel out - compare
Equation (15). The goal pose is reached when the Euclidean
distance from current system state to the goal state is below
a set limit le = 0.05. If this condition is not met after a time
limit, the positioning task is considered as failed.
The simulation with the erroneous n is run 1000 times with
the result that the convergence rate is 100%. This is no suprise,
since for this scenario with γ = 3π

4 and α = π
4 the distances to

the boundaries according to Equation (16) and (17) are large.

If either γ or α is close to the boundaries (< 1◦) and a strong
error (≈ 2‖n‖) is added to n, the simulation gets unstable.

B. Necessity of Measuring α

The next experiment evaluates the influence of α in the
controller term J̄ to the system’s behavior. The scenario is
run first with an ideal system with no noise and αs = α0,
which means a perfect measurement of the current angle, and
then αs is set to zero as proposed before.
With no noise both controllers have the same performance, i.e.
the goal pose was reached after the same number of time steps
and there is no positioning error, which is expected according
to Chapter III.
Now a noise term νf ∈ [−1, 1] in pixels is added to the
features points and also n is multiplied by a noise factor
νn ∈ [0.8, 1.2]. After that both controllers are used in respec-
tive 1000 simulation runs. The results are listed in Table I,
which shows how often the task was successfully finished or
not. Additionally ∆x̄, ∆ȳ and ∆ψ̄ are presented, which are
the mean value over the respective deviances of x y and ψ
from the goal values. The mean deviances indicate that even
when the task was not successful, the goal pose was almost
reached.

Target reached Target not reached ∆x̄ ∆ȳ ∆ψ̄
αs = α0 996 4 0.037 0.017 0.023
αs = 0 996 4 0.024 0.024 0.031

TABLE I
COMPARISON OF αs = 0 AND αs = α0

This experiment shows that there is no clear advantage in
measuring or estimating α0 and the choice αs = 0 is valid.

C. Direct Control vs. Decomposition

In the final experiment the direct homography based con-
troller CD must compete with the a homography based control
CH , where the homography matrix is decomposed in order
to receive the rotational and translational values. A decom-
position method can be found in [6]. Both controllers are
simulated concurrently in the same simulation environment,
which means that both receive the same initial homography
matrix and during the runs the feature points are equally
disturbed. The winner is the controller that converges first or
comes closest to the target pose, if none was able to meet
the convergence limit le. In the presence of no noise of the
homography matrix both controllers behave absolutely equally.

Therefore, different noise levels are added to the feature

CD wins CDclosest CHwins CHclosest
νf ∈ [−0.1, 0.1] 673 0 327 0
νf ∈ [−0.2, 0.25] 770 0 230 0
νf ∈ [−0.5, 0.5] 537 0 463 0
νf ∈ [−0.75, 0.75] 663 0 337 0
νf ∈ [−1, 1] 663 0 337 0
νf ∈ [−2, 2] 520 0 480 0

TABLE II
COMPETITION RESULTS OF CD VS. CH
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detection and the simulation runs 1000 times for each noise
level. The error level of n is kept in the range of 10% and
αs = 0. The results are presented in Table II. The target is
always reached, as a well condition feature set is used for this
simulation, which means that the features distribute itself over
the whole image plane. Simulations with different feature sets
have shown that the direct homography control can profit more
from a well distributed feature set than the decomposition
does.
Moreover Table II shows that the direct homography control
performs slightly better then the control with decomposition.
Generally, the performance for the position control of x and
y is similar, but a significant difference can be observed for
the angle control.
One simulation run with νf ∈ [−0.75, 0.75] is shown in detail
in Figure 5. The the above plot depicts the simulated motion in
the world coordinate system from the start position to the goal
and the second plot of Figure 5 displays the orientation over
the simulation time, whereas a strong jitter can be seen in the
signal generated by the homography decomposition control.
The here proposed method itself has demonstrated its ro-

yW

xW

CD CH
ψ

t
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-3 -2 -1 0 1 2 3
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-2

-1

0
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2

0
-0.1

10 20 30 40 50 60 70

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Fig. 5. State variables for a Simulated Run with νf ∈ [−0.75, 0.75]

bustness against uncertainties, therefore the last bigger source
of errors is the homography matrix. Consequently, a robust
feature detection and homography matrix calculation must be
considered when building a system as described here.

V. CONCLUSION

This paper presented a novel approach for vision based
control using homographies for navigation. Due to exploiting

the dynamics of a highly maneuverable vehicle a decompo-
sition of the homography matrix is never necessary, which
leads to a computationally more efficient and robust controller.
The feedback for the 3D motion control consists purely of
measurements in the 2D image space. No Cartesian values
have to be measured or estimated during the approach to
the target, whereas only an image at the target pose and an
estimation of the normal vector to the feature plane at the goal
position are necessary.
If the vehicle is controlled by a standard P controller, the con-
vergence is asymptotic. A better solution is to use a non-linear
controller until the robot is located in certain vicinity to the
target in order to achieve an almost exponential convergence.
In the future the algorithm should demonstrate its performance
on real hardware to handle for e.g. homing or platooning
tasks. So far an estimation of the normal vector is necessary
and therefore the goal pose must be known a priori. An
online target generation would be an interesting research topic
and would make the approach feasible for the navigation in
unknown environments.
From a systems theory’s point of view the integration of a
more sophisticated vehicle dynamics model could be inter-
esting. At this point mainly robustness against sensor errors
is taken into account, whereas non-perfect behavior of the
vehicle’s dynamics is not considered explicitly.
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