
A Framework for Dynamic Sensory Substitution

Artashes Mkhitaryan and Darius Burschka

Abstract— In this paper we present a framework for dynamic
substitution of different sensory modalities with existing physi-
cal sensors. Our system is capable of finding the most optimal
set of mathematical and physical transformations between two
modalities of physical and virtual sensors. It allows a creation
of new virtual sensors from given set of physical sensors. The
virtual sensing may extend to new sensing modalities for which
no direct physical sensors exist. The framework optimizes for a
minimal error and optimal observation in the resulting fusion.
It is processing the chain for a given spatial measurement and
measurement range. The framework is capable of increasing
the reliability of acquired data in multi-sensor systems by being
able to asses the amount of accumulated errors. We give two
examples of real-world applications of this framework in robotic
environments.

I. INTRODUCTION

Perception becomes an increasingly important module in
autonomous mobile systems that need to create their own
mission plans from sensor data. The increasing demand on
various sensing modalities requires an increased number of
physical sensors on the plaforms. Similarly, smartphones are
fitted with a variety of basic sensors like, monocular camera,
gyroscope, GPS, accelerometer, microphone and much more.
An approach that allows the fusion of sensory data from
different modalities does not only increase the reliability of
the acquired data by adding redundancy to the system, but
widens the spectrum of sensible modalities, using virtual
sensors. An example of this is illustrated in Fig. 1, where
a virtual force sensor is created by means of an optical
camera observing the deformations of an elastic membrane.
This example will be discussed in detail in section III-
A. Although current cognitive neuroscience research treats
Sensory Substitution as visual input substitution by either
acoustic or tactile modalities, the goal of this paper is to
provide a framework that generalizes this concept to any
sensing modality.

Our framework estimates the optimal chain of transfor-
mations from the sensing domain of the original sensor(s)
to the desired sensing modality, using a set of physical
laws and mathematical operators. It takes into account not
only the modality that the initial sensor operates in but
also its operating range and the expected error. The chain
of transformations is established by applying the weighted
Dijkstra’s search algorithm on a connected graph, whose
nodes are the available transformations. In situations where

This work has been supported by an internal grant ”Real-Time Perception
and Exploration with Collaborating Agents” of the German Aerospace
Center (DLR)

Artashes Mkhitaryan and Darius Burschka are with Faculty of Informat-
ics, Technical University of Munich, Boltzmannstrae 3, 85748 Garching bei
Mnchen, Germany {mkhitary|burschka}@in.tum.de

Fig. 1. An example of a virtual force sensor. It is realized by an optical
camera, which registers the deformations of a plastic membrane.

the initial operating range of the original sensors changes, our
framework dynamically reconfigures the graph to the current
conditions.

According to the type of the considered sensory signal, the
topic of sensory substitution can be divided into correspond-
ing domains, i.e. haptic, visual, audio, etc. While there are
currently many approaches that specialize on substitution of
individual classes of sensory signals, in general a method
that unifies all the types into one framework is missing.
The two largest parts of the mentioned research focus on
haptic sensory substitution, that is aimed at the development
of prosthetics, and visual sensory substitution that is aimed
for the compensation of visual impairment.

Haptic sensory substitution can be further divided into
subcategories: methods that inherit the electro-mechanical
approach and those that adopt the vision based approach.
Damian et. al. [1] present an artificial skin for prosthetic
limbs, which is designed to help detect slippage. It uses the
electro-mechanical approach to compute the 2 dimensional
friction forces occurring over its surface. Another example
of electro-mechanical force sensing is described in [2]. The
authors present a force sensor for teleoperation of remote
limbs. Former contains a number of hollow cylinders with
different heights, that are enclosed in one another eventually
forming a conical pyramid. Based on the number of shifted
cylinders and the magnitude of the shifts, the authors are
able to estimate the perpendicular force vector and the ap-
proximate area of the contact. Both of the previous methods
are only providing partial information regarding the contact,
and the forces acting on it.

More recent works specializing in haptic sensory sub-
stitution are concentrating on vision based approaches. In
their paper [3], [4], [5], present a sensitive fingertip sensor
that consists of a CCD camera mounted on one side of a
clear silicon, and two rows of colored spherical markers
that are located within the clear silicon. Based on the
observed shifts between the two rows of the markers, the
authors present an algorithm for three dimensional force
distribution reconstruction. Another method for vision based
haptic sensory substitution is described by Mkhitaryan et. al.

2014 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 2014)
September 14-18, 2014, Chicago, IL, USA

978-1-4799-6934-0/14/$31.00 ©2014 IEEE 3947

[6]. The sensor consists of a CCD camera mounted on one
side of a hollow frame and a rubber membrane mounted on
the other side of the hollow frame in an airtight manner. The
authors estimate the acting forces and the contact shape based
on the three dimensional reconstruction of the membrane.
Most of the works described above are concentrating on one
or two aspects needed for full tactile sensory substitution.
The need for a framework that will allow the combination
of different aspects into one is apparent.

The methods for visual sensory substitution are less struc-
tured than the ones for haptic sensory substitution, however
some categorization can be done here as well. One set of
those methods can be classified as vision based. Johnson
et. al. [7] describe a device for improving the navigation of
visually impaired people. The device consists of a stereo pair,
a processing unit and a tactor belt. It operates by converting
the visual information into vibrations that are performed by
the belt. The authors where successful in obstacle avoidance
in sparse environments. In [8] another device is described
for vision based visual sensory substitution. The authors use
a camera mounted on the head of the human user. Latter is
connected to a processing unit, which converts the images
into 144 low-voltage impulses that are sent by means of a
ribbon cable into the mouth of the user. As a result human
operator was able to catch a rolling ball solely based on the
input from this device.

Many papers in biology discuss the mechanics behind
the sensory substitution for humans and animals, that have
lost their vision or never had it. In his paper, Rauschecker
performs experiments on auditory localization between cats
that where blind since birth and sighted cats. The results
have shown that as a compensation to visual impairment the
blind cats where better at auditory navigation. In his work
Windsor [10] describes the navigation mechanism used by
the Blind Mexican cave fish (Astyanax fasciatus). Here, the
fish uses the reflections of the waves coursed by its motions
to successfully avoid obstacles, and form an idea regarding
the surrounding terrain.

Other cases of sensory substitution in nature can serve
as strong basis for sensor development and substitution in
man made devices. In [11] authors describe the logistics
behind auditory localization performed by snakes. Snakes
lack a tympanic membrane and the external ear openings,
but are equipped with a perfectly functioning inner ear. They
can localize the pray based on the vibrations of the sand by
placing their jaw on it, which allows the transfer of vibrations
to the inner ear. Farnosch [12] et. al. describe in their work
the model by which frogs detect their pray. Using many of
it’s lateral organs it can not only determine the direction
and the nature of the motion occurring in distance, but also
can distinguish between two different sources of motions. In
[13] the authors describe the mechanics by which the snakes
equipped with a poor infrared sensor determine their pray.

II. THE FRAMEWORK

In this paper we present a framework for dynamic sensory
substitution. Our framework is able to dynamically establish

a link between the modalities in which the initial sensors
operate and the modalities which need to be sensed through a
chain of transformations. The latter are represented as nodes
in a connected graph, with the initial sensors marked as
starting points, and the target sensing modality is marked as
the goal Fig. 2. We call this graph, transformation graph. The
edge weights of the transformation graph are computed based
on the inputs of the corresponding node and the error due
to the transformation. An optimal chain is then obtained by
applying the extended, weighted Dijkstra’s search algorithm
on the aforementioned graph.

A. Creation of the Connected Graph

As we already mentioned, we define the available math-
ematical and physical transformations as the nodes of our
connected graph. The nodes are described based on their
input and output arguments, see Fig. 3. Here the left block
represents the input arguments, i.e. the arguments required
for the transformation, and the right block represents the
output arguments, the arguments that result due to the trans-
formation. Further we connect all the inputs and outputs with
the corresponding arguments. An example of a completed
transformation graph is given in Fig. 2.

Based on the type of input arguments, that the transforma-
tion requires we distinguish between three classes of input
blocks, basic, iteration dependent and high-order.

1) Basic Input Blocks: Basic input blocks belong to
transformations that require one unique input argument, such
as a simple multiplication by a scalar. Fig. 3 (A) illustrates a
case with a basic input block. This could be used to compute
force from the output of an accelerometer.

2) Iteration Dependent Blocks: These input blocks belong
to transformations that along side with the current argument
require the value of the argument from previous iterations,
see Fig. 3 (B). An example of a transformation that has
an iteration dependent input could be a computation of a
derivative, e.g to determine velocity from displacement.

3) High-order Input Blocks: The third class corresponds
to an input block that belongs to a transformation, which
requires multiple consecutive values of its input argument,
see Fig. 3 (C). An example of a transformation requiring a
high-order input block could be sub-sampling a signal.

The difference between the high-order and the iteration
dependent input blocks is that the latter store the current
value of the argument for use in the next iterations, whereas
the high-order input blocks do not maintain any state.

The edges of the transformation graph are weighted based
on the class of the input block they connect to. The weight
of each edge is defined as the combination of two parts,
an additive and a multiplicative. The numbers written in
dashed circles Fig. 3 represent the weight of each type. Here
the left number is the additive and the right number is the
multiplicative.

1) Additive: The additive weight represents the expected
error that would occur due to the transformation. Fig. 4
illustrates a simple case for computing the additive weights.
The initial sensor operates in [0; 6.6] range, without errors.

3948

Start

A,B
A
B

A
B

A
B D

Di

Di−1
∆D

Bi

Bi−1
∆B

∆B
A
B

M
Mi

Mi−1
∆D

Goal

∆D

0.7|1 0.1|1

0.1|1

0|2 0|1

0.1|2

0.1|1 0|1.1

0.3|1

Fig. 2. Depiction of the generic transformation graph, described in Sections II-A and II-B.

K
L

K ÷ L

Mi

Mi−1
∆M

F1

...
FΩ

F1+...+FΩ

Ω

A

B

E

e|1

e|ξ

e|Ω

Basic

Iteration Dependent

High-Order

Fig. 3. Different classes of transformation blocks. (A) a transformation with
a basic input block. Those are linear transformations that require only one
value of its input argument. (B) a transformation with an iteration dependent
input block. Those represent the first class of non linear transformations that
require sequential values of the input argument from the previous and current
iterations. Here, ξ is the multiplicative of the weight, that is higher than 1,
due to the non linear nature of the transformation. (C) Transformations with
high-order input blocks. Those require multiple consecutive values of the
input argument, and do not retain state. Here Ω is the multiplicative weight,
that is equal to the order of the input block.

Thus, assuming normal distribution the expected value is
3.3. Since the sensor operates without any errors the additive
weight of the first edge would be 0. According to the error
profile of the first input block the expected error is 0.3.
Therefore additive weight of the second edge would be 0.3.
Further, due to the first transformation the expected value
would change to 2.5. Henceforth, using the new expected
value and repeating the same steps as before the additive
edge of the third edge would be 0.15. If there are further
transformations available along the chain this process is
repeated over and over again until the goal is reached.

2) Multiplicative: The multiplicative weights represent
the amount of transformations that where performed until the
current node was reached. Their main role is to emphasize

3.3

W
or

ki
ng

R
an

ge

Value

3.3

0.3

E
rr

or

Value

0.15

2.5

E
rr

or

Value

Start

A

A B

B D

D

Goal

0|1

0.3|1

0.15|1

Fig. 4. Illustration of the process of assigning additive weights to the
edges.

the accumulated transformation errors from previous steps,
especially for those with non basic input blocks. Thus, the
weights of the edges depend on the class of the input block
they connect to. Since the basic input blocks require as
an input just one unique argument. It will travel through
the transformation chain only once. Hence we assign the
multiplicative weights of the edges connecting to basic input
blocks to 1. The transformations with iteration dependent
input blocks require the values of the argument from current
and previous iterations to perform. In comparison to trans-
formations with basic input blocks, here the transformation
is performed on two values with the same error order. Thus
error accumulation will not be linear. Therefore the edges

3949

Start

A,B
A
B

A
B

A
B D

Di

Di−1
∆D

Bi

Bi−1
∆B

∆B
A
B

M
Mi

Mi−1
∆D

Goal

∆D

0.7|1 0.1|1

0.1|1

0|2 0|1

0.1|2

0.1|1 0|1.1

0.3|1

0 inf
0.7

inf
inf

0.2 inf inf

.3

inf

inf

inf

(a)

Start

A,B
A
B

A
B

A
B D

Di

Di−1
∆D

Bi

Bi−1
∆B

∆B
A
B

M
Mi

Mi−1
∆D

Goal

∆D

0.7|1 0.1|1

0.1|1

0|2 0|1

0.1|2

0.1|1 0|1.1

0.3|1

0 1.51
0.7

0.8
1.6

0.2 1.1 1.21
0.3

0.8

1.6

1.51

(b) Final result of the search

Fig. 5. 5(a) a depiction of an intermediate step of the search algorithm. The step was selected to illustrate the handling of multiple inputs of a transformation.
5(b) the final result, after all the distances to the goal have been computed.

connecting to iteration dependent blocks have multiplicative
weights that are higher than 1. Lastly, the higher-order input
blocks require multiple consecutive values, all of which have
to travel through the chain of transformations up to that
point. Therefore the amount of the accumulated error would
be directly correlated to the amount of times the value of
the argument had to travel through the chain. Thus the
multiplicative weight for the edges connecting to high-oder
input blocks is set to the order of the corresponding block.

B. Extended Dijkstra’s Algorithm

In this section we discuss a generic example to illustrate all
the steps of our framework, as well as show the significance
of the assigned weights. The graph contains transformations
with all the mentioned input block classes. As already
mentioned, we use an Extended Dijkstara’s algorithm for
finding the optimal set of transformations. We amended the
assignment of weights, as well as the computation of the path
distance value. The steps of Dijkstara’s search algorithm are
as follows:

Fig. 2 illustrates the generic graph that was constructed
according to the rules described in the section above. Since
the graph is generic the additive weights are chosen in a way
that helps to emphasize the effects of transformation blocks
and in the scopes of this example they do not carry any
physical meaning behind them. For simplicity reasons we
defined all the high-order input blocks as 2nd order. Also,

Algorithm 1 Dijkstra (Graph, source, target)
for all V ∈ Graph do

dist[V.index] = inf;
visited[V.index] = false;

end for
dist[source] = 0;
C = Graph[start];
label: 1;
if C.index = target then

return dist[C.index];
end if
for all N ∈ V .neighbors do

if not visited[N .index] then
d = distance(N ,C);
if dist[N .index] > d then

dist[N .index] = d;
end if

end if
end for
visited[C.index]=true;
C = Graph[index(min(dist[]))];
goto 1;

3950

the transformation with the iteration dependent input block
represents a numerical derivative. In this case the derivative
is computed according to (1), where the Mi+1 and Mi are the
values of the argument from current and previous iteration
steps, and h is the step. Since the operation between the
two values is a scaled subtraction, the error accumulation
due to this transformation is not large. However, it is still an
iteration dependent transformation and has a disadvantage
to basic transformations, therefore we set its multiplicative
to 1.1.

M
′

=
Mi+1 −Mi

h
(1)

Here we are using one initial sensor that is marked as start.
It is able to sense in [A;B] domain, and has its distance set to
0. The sensor is capable of sensing in [B] dimensionality with
relatively small error, however in contrast to that the sensed
errors in [A] dimensionality are quite high. The original
sensor is connected to two transformations, of which one
has a basic input block and the other has a high-order input
block. Since the transformation with the basic input block
requires both high error [A] and low error [B] arguments as
its input, the additive weight is set to a relatively high value
of 0.7. On the other hand the transformation with the high-
order input block, only requires [B] as its argument, therefore
its additive weight is set to a low value of 0.1. However
since the latter has a 2nd order high-order input block its
multiplicative is set to 2. We apply the above described
Dijkstra’s search algorithm to compute both of the distances
to the goal. At each node we use the following formula to
compute the distance to its neighbors:

n = (c+ a) ∗m (2)

Where n is the distance value of the neighboring node, c is
the distance value of the current node, a is the additive and
m is the multiplicative.

Fig. 5(a) depicts an intermediate case where one of the
transformations requires two inputs that are provided from
different sources. In this case we compute the distance to the
considered node as a summation of two distances. According
to the illustration the distance to one of the inputs is already
computed and is set to 0.3, however the distance of the
second input is not computed yet, and is infinite. Therefore
the global distance to the node is set to 0.3 + inf = inf .

The final result of the search is illustrated in Fig. 5(b).
Here we have two possible chains to reach the goal. One
of which requires 4 sequential transformations (marked with
cyan), and the other one requires 3 transformations (marked
with red dots). Note that, even though the chain marked with
cyan dots has more transformations than the other one, it still
has a shorter distance. The reasons is that in contrast to the
shorter chain, in this case the transformation with high-order
input block is located at the very beginning. This means that
the error accumulation does not have as much of an impact
as in the case where the high-order transformation is located
nearly at the end of the chain. Also note that, even though the
transformation with the iteration dependent input block has

Camera

{u, v}it

ti
ti−1

∆t

{x, y, z}i
{x, y, z}i−1

∆t
{V}i

{V}i
{V}i−1

∆t
{a}i

{a}i
δ{m}i

{F}i

{u, v}i
K

{x/z}i
{y/z}i

{x/z}i
{y/z}i
S

{x, y, z}i

{x, y, z}i
{x, y, z}i−1

∆{x, y, z}i

∆{x, y, z}i
k

{F}i

{Fi}

Goal

K

S

k
{δm}i

0|1.01

0|1

0|1

5.55|1.1

0.09|1

0|1

0|1

0.5|1

0|1.1

0|1.1

0|1

0.04|1

0

0

0.5

0.55

0.55

0

0.55

6.71

6.8

6.80.59

0

0.55

06.71

Fig. 6. Transformation graph, for a sensitive fingertip sensor. Here the
system is setup to sense forces using a regular CCD camera. The graph
contains two possible transformations chains. The firs chain (marked with
cyan dots) contains the set of transformations necessary to sense forces
using Hook’s law. The second chain (marked with red dots) contains the
set of transformations necessary for sensing forces using Newton’s second
law.

and additive weight of 0, it still has an impact on the distance
calculated. Where the transformations with basic inputs and
0 additive weights do not affect the distance at all.

III. APPLICATION EXAMPLES

In this section we will be discussing two applications,
where our framework is used. In the first application we
developed a new sensitive robot fingertip [6], that is able
to sense the applied forces over a fingertip. It consists of
an elastic membrane (the fingertip), a frame and a CCD
camera. The latter is computing the applied forces based on
the observation of the deformations of the elastic membrane
(Fig. 1). Second example involves a modern smartphone, that
is equipped with an accelerometer and a camera. Here the
task is to compute the accelerations of the cellphone. The
system makes a decision in favor of either using the raw
accelerometer data or computing the acceleration based on
the visual information from the camera. The decision is made
based on the current operating range.

A. Example of a Vision Based Force Sensor

We developed a force sensor that estimates the force
field that is applied on an elastic membrane. Our sensor

3951

consists of a CCD Camera that performs a marker based
3D reconstruction of the membrane. Later the system ap-
proximates the membrane by a grid of springs and based
on its physical transformations estimates the acting forces.
There are two main ways for estimating the acting forces
(Fig.6). The first is using Hook’s law (marked by cyan dots),
where the system estimates the acting forces on each node
of the grid based on the stretches of adjacent springs. The
second one is using Newton’s second law (marked by red
dots), where the acting forces on each node are estimated
based on their accelerations and mass. This method is at a
disadvantage to the one based on Hook’s law since it requires
a dynamic system. Nevertheless we will discuss both the
cases to illustrate the nature of the error accumulations and
the reliability of the results by either one of them.

Fig.6 illustrates the transformation graph of our setup.
Here the main sensor (CCD camera) operates in [u, v, t]
dimensions. Where (u, v) are the pixel coordinates on the
image plane of the camera, and t is the time of image
registration. The chains for both of the methods start with the
same two transformations. Those are, the conversion from
image coordinate system to world coordinate system, and
the 3D reconstruction of the markers. The marker detection
algorithm performs with sub-pixel accuracy thus, the error
is up to .5px (first transformation from the left), and the
errors emerging from the 3D reconstruction are small and
can be neglected. The chain splits after the 3D reconstruction
transformation. The chain describing the method based on
Newton’s law proceeds with transformations computing the
velocity based on spacial change in time, and acceleration
based on velocity change in time accordingly. While the
chain describing the method based on Hook’s law proceeds
by computing stretches of the the approximated springs and
then the forces accordingly.

Note, the final distance to the goal of the chain based on
Hook’s law is significantly smaller than the second chain.
There are couple of reasons behind it. The large errors that
result due to the transformations in the beginning, belong
to both of the chains. However the chain describing the
method based on Newton’s law is longer than the other
one. Therefore the error accumulation in it will amount to a
larger value. The second reason is that due to their dynamic
nature, the transformations responsible for computation of
acceleration based on the spacial change, result into two
iteration dependent transformations in a row. The latter also
adds large additive errors due to the time discretization.

As a second result, we constructed the sensitive fingertip
sensor. The latter is capable of dynamically measuring the
force fields over its fingertip, and has a relatively small
error of 0.04N . More detailed information regarding the
implementation and the operation of the sensor can be found
in [6].

B. Optimal Path for Computing Acceleration

Here we consider a modern cellphone that is equipped
with a camera and an accelerometer, the task of this system
is to compute the best acceleration estimate of the cellphone.

Camera

{u, v}i, t

ti
ti−1

∆t

{[R|T]}i
{[R|T]}i−1

∆t
Vi

Vi

Vi−1

∆t
{a}i

{u, v}i
K

{
x
z
y
z

}
i

{
x
z
y
z

}
i

S
{[R|T]}i

Accelerometer

{a}i

{a}i

Goal

K

S

Fig. 7. Depiction of the transformation graph designed to estimate the best
acceleration value of a cellphone. There are two ways to perform. First, by
reading the data directly from the accelerometer located on the cellphone.
Second, by computing the accelerations based on the images acquired by
the camera located on the cellphone.

10−1

Distance (cm)

E
rr

or
(c
m

)

10 15 20 25 30 35 40 45 50 55
-.5

0
0.5

1
1.5

2

(a)

10−1

Angle (rad)

E
rr

or
(c
m

)

0 2 4 6 8 10 12
-.5

0

0.5

1

(b)

Fig. 8. 8(a) Illustrates the error dependency of the 3D reconstruction
algorithm to the distance between the marker and the camera. 8(b) Illustrates
the error dependency of the 3D reconstruction algorithm to the angle of view.
Here, the presented angle is the out-of-plane angle between the cellphone
and the surface of the marker, note that the in-plane rotation angels are not
presented since they do not add any errors.

3952

s

m
/s

2

0 50 100 150 200 250 300
-5

-3

-1

1

3

5

7

(a)

s

m
/s

2

10 20 30 40 50 60

-1

-0

1

2

3

(b)

s
m
/s

2

240 250 260 270 280 290

-3

-2

-1

0

1

2

3

(c)

Fig. 10. 10(a) Illustration of the registered accelerations. Here the data registered from the industrial accelerometer (XSens) is plotted in blue. The
reconstructed accelerations from the cellphone-camera are plotted in red, and the accelerations registered from the accelerometer located on the cellphone
itself are in green. Note that for lower accelerations the error from the cellphone accelerometer is larger than the error from the camera, however for large
accelerations this changes. To ensure a better observability of the previous statement we provide two zoomed sections 10(b), 10(c) of the 10(a) graph.

Acceleration (m/s2)

E
rr

or
(m

/
s2

)

-10 -8 -6 -4 -2 0 2 4 6
0
1
2
3
4

Fig. 9. Error profile of the accelerometer that is embedded in the cellphone.
Here the red line illustrates the standard deviation of the errors, that is
1.43m/s2.

Since accelerometers that come with cellphones usually have
quite a low signal to noise ratio, the data they provide is
quite unreliable for small accelerations Fig. 9. Note, that the
standard deviation of the error for the measured accelerations
is about 1.5m/s2. This means that the measurements of the
accelerometer for accelerations below 1.5m/s2 are unsound.
On the other hand accelerations computed from the camera
have lower errors for smaller accelerations, but tend to be
unreliable for large acceleration. This is due to the fact that
the derivation error due to time discretization is directly
proportional to the magnitudes of acceleration and jerk eq.
(3).

ET =
f

′′
(ξ) ∗∆t

2
(3)

Acceleration (m/s2)

E
rr

or
(m

/
s2

)

0 1 2 3 4 5 6
0

1

2

3

Fig. 11. Error analysis for the two acceleration registration methods. Here
the green dots represent errors of the data registered by the accelerometer
located on the cellphone and the red dots represent the errors of the
accelerations computed from the camera images.

Where ET is the error due to the numerical derivation,
f

′′
(ξ) is the second order time derivative of the function

and ξ is just a number in the range [t0; ∆t] (t0 being current
time). Fig. 7 illustrates the transformation graph of our
system. There are two ways of obtaining the accelerations
of the cellphone, either directly through the accelerome-
ter or through a set of transformations performed on the
camera image. For each iteration, our system is computing
the acceleration based on both methods, and depending on
the obtained distance, it is deciding which value is more
reliable. Here the additive errors are computed dynamically

3953

based on the error profiles of each transformation. Since the
camera is only registering images with timestamps, the first
transformation (left) is conversion from image coordinate
system to world coordinate system. Here (u, v) are the image
coordinates and K is the intrinsic camera matrix, {x/z}i
and {y/z}i are the pixels in world coordinate system. The
additive errors in this step are constant and occur due to the
discretization of the space by the camera itself. The second
step in the chain is the reconstruction of the camera pose
(second transformation left). Here we are using a marker
based approach to obtain the rotation and translation [R|T]
pair that describe the pose of the camera, S is a scalar
describing the size of the marker, and ({x/z}i, {y/z}i are
the rays pointing at it. Fig. 8 illustrates the error dependency
of the pose reconstruction to the distance between the camera
and the marker, and the viewing angle, note that since the
error does not depend on in-plane rotations the provided
dependency is only for out-of-plane rotation angles. The third
step in our chain (second transformation from the right) is
the computation of the velocity (Vi) of the camera. This is
done based on the current and previous poses of the camera
and the time that elapsed between their registration. The error
in this case can be computed analytically using eq. (3). The
final step (third transformation right) is the computation of
the acceleration (a) of the camera, which is done similar
to previous step, where the error can also be computed
using eq. (3). We tested the system using an industry grade
accelerometer (XSense), that we attached to the cellphone to
measure the ground truth. Fig. 10 illustrates the results for
registered accelerations with all three methods. Here the blue
graph represents the ground-truth, the green line depicts the
accelerations that are read from the accelerometer located
on the cellphone, and the red line shows the reconstructed
accelerations from the camera. Fig. 11 illustrates the error
analysis for the same case, here the green dots are the errors
of the accelerometer and the red dots are the errors of the
reconstruction. Overall our system was able to pick the most
accurate solution in around 75% of the cases, the decisions
where mostly inaccurate where the errors from both methods
had similar magnitudes.

IV. CONCLUSIONS

We have presented a framework for dynamic sensory sub-
stitution. Our framework is capable of dynamically establish-
ing optimal connections between different sensor modalities
through a set of physical and mathematical transformations.

Latter allows the creation of virtual sensors that are able
to sense in modalities that the original sensors were not
designed to operate in. The set of transformations is selected
not only based on their amount, but also on the expected
errors that occur due to the transformation, as well as the
operating range of the sensor. We have shown exemplary that
our framework is capable to select the best measurement in
cases where there is more than one initial sensor available. It
selected the best possible solution in 75% of the cases and
underperformed only in cases where both of the possible
solutions had very close values.

REFERENCES

[1] Dana D. Damian and Harold Martinez and Konstantinos Dermitzakis
and Alejandro Hernandez-Arieta and Rolf Pfeifer ”Artificial Ridged
Skin for Slippage Speed Detection in Prosthetic Hand Applications”
IEEE/RSJ International Conference on Intelligent Robots and Systems
October 18-22, 2010, Taipei, Taiwan

[2] Antonio Bicchi, Enzo Pasquale Scilingo, Danilo De Rossi ”Haptic
Discrimination of Softness in Teleoperation: The Role of the Con-
tact Area Spread Rate” IEEE TRANSACTIONS ON ROBOTICS &
AUTOMATION

[3] Katsunari Sato and Kazuto Kamiyama and Naoki Kawakami and
Susumu Tachi ”Finger-Shaped GelForce: Sensor for Measuring Sur-
face Traction Fields for Robotic Hand” IEEE TRANSACTIONS ON
HAPTICS, VOL. 3, NO. 1, JANUARY-MARCH 2010

[4] Kazuto Kamiyama and Kevin Vlack and Terukazu Mizota and Hi-
royuki Kajimoto and Naoki Kawakami and Susumu Tachi ”Vision-
Based Sensor for Real-Time Measuring of Surface Traction Fields”
IEEE Computer Graphics and Applications

[5] Kazuto Kamiyama and Hiroyuki Kajimoto and Masahiko Inami and
Naoki Kawakami and Susumu Tachi ”A Vision-Based Tactile Sensor”
ICAT 2001 December 5 Japan

[6] Mkhitaryan Artashes and Darius Burschka. ”Vision based haptic mul-
tisensor for manipulation of soft, fragile objects” In IEEE SENSORS,
2012.

[7] Lise A. Johnson and Charles M. Higgins ”A Navigation Aid for the
Blind Using Tactile-Visual Sensory Substitution” Proceedings of the
28th IEEE EMBS Annual International Conference New York City,
USA, Aug 30-Sept 3, 2006

[8] Paul Bach-y-Rita and Stephen W. Kercel ”Sensory Substitution
Human-Machine Interfaces”, TRENDS in Cognitive Sciences Vol 7.
N. 12, December 2013 ELSEVIER

[9] Josef P. Rauschecker ”Compensatory plasticity and sensory substitu-
tion in the cerebral cortex” TINS Vol. 18, No. 1, 1995 ELSEVIER

[10] Shane Windsor ”Hydrodynamic imaging by blind Mexican cave fish”
Thesis (PhD–Biological Sciences)–University of Auckland, 2008.

[11] Paus Friedel and Bruce A. Young and J. Leo van Hemmen ”Auditory
localization of Ground-Borne Vibrations in Snakes” PhysRev Letters
PRL 100, 048701 (2008)

[12] Jan-Mritz P. Franosch and Marion C. Sobotka and Andreas Elepfandt
and J. Leo van Hemmen ”Minimal Model of Pray Localization through
the laterl-line systems” PhysRev Letters Volume 91, Number 15 (2003)

[13] Andreas B. Schert and Paul Friedel and J. Leo van Hemmen ”Snake’s
Perspective on Hear: Reconstruction of Input Using an Imperfect
Detection Systems”, PhysRev Letters 97, 068105 (2006)

3954

