
Generating a Tailored Middleware for Wireless Sensor Network Applications

Christian Buckl, Stephan Sommer, Andreas Scholz, Alois Knoll, Alfons Kemper
Department of Informatics

Technische Universität München
Garching b. München, Germany

{buckl,sommerst,scholza,knoll,kemper}@in.tum.de

Abstract

Wireless sensor networks are characterized by resource
constraints. Therefore, today’s sensor networks are imple-
mented from scratch emphasizing code efficiency. This de-
velopment strategy leads to relatively complex code and bad
code reusability in further projects. To improve reusability
and development efficiency, it is state-of-the-art in the de-
velopment of standard information systems to divide appli-
cations into at least two parts, the application-logic, pro-
viding all the functions to solve a given problem and a
reusable distributed middleware providing a container for
the application. After developing the middleware once,
the developer of further projects need to focus only on
the application-logic. Thereby, the development times can
be reduced considerably. However, a generic middleware
layer replacing code implemented from scratch is not prac-
ticable in sensor networks due to resource constraints.
Within this paper, we will present a model-driven approach
in combination with a template-based code generator to get
the best of both development strategies. This approach en-
ables us to generate a tailored middleware for our appli-
cation including interface-stubs for the application-logic.
In contrast to other component-based approaches, the tem-
plates can be adopted easily to fulfill specific platform
needs. We will demonstrate the practicability of this ap-
proach by implementing the control of a model railway.

1 Introduction

Developing wireless sensor network applications re-
quires a different approach than developing standard infor-
mation systems. Many problems such as mobility, limited
resources and unreliable communication links, must be con-
sidered by the developer. In most other domains, these
problems are solved by underlying abstraction layers. In
standard information systems, these abstraction layers are
realized by a middleware that offers high-level services to

the developer. But due to the limited resources available
on wireless sensor nodes, a generic middleware providing a
container for all applications in the sensor network is quite
impossible. Although, one can currently observe the advent
of new, more powerful nodes such as iMote2 [3] that enable
the use of a generic middleware, e.g. the .net Framework
[17], these nodes are too expensive and require too much
power to be used in many sensor network applications.
Resource constraints such as available main memory or lim-
ited power supply force the developer to implement these
services, typically provided by middleware, manually and
tailored for a specific hardware and application. Therefore,
developers with expert platform and low-level program-
ming knowledge are required. This application-specific de-
velopment of standard functionality is a very slow and com-
plex process which impacts the development time of the
whole project and reduces the code reusability. In addition,
the resulting code mixes typically aspects concerning appli-
cation and system logic. Because of this, minor changes
in application-logic may lead to vast changes of the whole
system; code reuse is quite impossible.
A solution of this problem is an application and platform
specific middleware with defined interfaces for applica-
tions. The separation of system and application logic helps
to split the software development into different parts. Fig-
ure 1 shows a logical view of such a component/container
infrastructure [21]. A middleware/container offers differ-
ent services, like component discovery and inter-component
communication, to application components denoted by an
A in the figure. Hardware related software components,
denoted by an H, realize the hardware access (sensing or
actuating) and hide implementation details. An application
domain expert is able to develop the application-logic with-
out considering each platform detail like communication or
sensor-access. On the other hand, developers with low-level
programming skills and expert hardware knowledge can de-
velop the services provided by the middleware and used by
the application-logic. However, it is important to guarantee
that the container realizes only the functionality required by

1

Figure 1. Component/Container Infrastruc-
ture

the application and implicates no or only minimal overhead
in comparison to the manual implementation.
In this paper, we will present a tool-supported approach
that realizes such a tailored middleware. To increase de-
velopment efficiency, the manual tailoring of its compo-
nents is replaced by a model-driven development approach.
Thus, the approach combines the advantages of component-
based and model-based development, as discussed in [19].
The domain expert creates a model of the intended appli-
cation based on a meta-model describing the relevant fea-
tures of sensor network applications. Based on the model, a
template-based code generator produces the middleware in-
cluding interfaces for the application-logic. Templates can
be seen as highly adaptable components. Each template can
solve a particular aspect of the middleware or can be used to
construct the middleware out of other templates. Using this
approach, we can create a tailored middleware providing
exactly the features required by the application. Therefore,
we get a good tradeoff between resource-use, code size and
development time.
The paper starts with a discussion of the components of a
middleware that are useful for wireless sensor networks in
Section 2. In Section 3, we describe the models used for
the code generation. The code generation technique is ex-
plained in Section 4. Section 5 discusses our first prototype.
In Section 6, the experiences with the tools are described in
the context of a simple application. The related work is dis-
cussed in Section 7. Finally, Section 8 concludes the paper
and points out possibilities for future work.

2 Middleware

Within this section, we will discuss the tasks and related
components of the middleware. The general architecture is
depicted in Figure 2. Similar to CORBA [14], we provide
well defined interfaces for the application components to
access the container-services. But in contrast to CORBA,
our container can be tailored for a specific application and
hardware.
We expect the system to be heterogeneous concerning the

computational power and memory capabilities. Therefore,
the nodes can take over different roles within the whole
system. Resource-constrained nodes can be used to per-
form simple interactions with the environment like sens-
ing or actuating. More powerful nodes can control the
whole network, optimize the data flow and trigger appli-
cation changes.
The middleware forms a container that allows an easy com-
bination of the components realizing the application func-
tionality. Regarding these components, we distinguish two
kinds of components. An Application Component realizes
a control function of the application. The functionality can
be implemented independently of the underlying hardware.
Therefore, these components can be placed within the dis-
tributed system according to some performance criteria. In
contrast, a Hardware Interaction Component realizes the
hardware access, e.g. sensing or actuating, and must be im-
plemented hardware dependent.
The middleware realizes the interaction of these compo-
nents and can be seen as intelligent glue code. In contrast
to the operating systems such as TinyOS [18] or SOS [16],
which are very often considered to be middleware them-
selves, the presented approach has to be seen at a higher
level. In particular, it offers services related to the distrib-
uted execution of sensor applications such as routing, node
failure management and quality of service. It consists of
several components as depicted in Figure 2. The commu-
nication between the different nodes is handled by the Net-
work Service. In this service, all supported communication-
media, e.g. ZigBee or serial communication, of a single
node are implemented. Details about the network protocol
and routing are hidden by this service.
Received messages are forwarded to the Broker Service.
This service handles all communication at the level of ap-
plication logic. This comprises the local communication
between different application components and / or hardware
services, as well as the transmission of local results to exter-
nal components. Every time a new message is received by
the network layer or sent by a local component, the Broker
Service determines the set of target components. If a target
component is located on a different node, the Broker Ser-
vice sends a message, including the target-node id, to the
Network Service.
The configuration of the Broker Service is handled by the
Application Management. While the Network and Broker
Service must be implemented on each node, the Applica-
tion Management may be realized only on more powerful
nodes. The Application Management is responsible for the
configuration of the whole application and tries to optimize
this configuration according to different criteria, like QoS
or maximum life time. The Application Management is
supported by a Component Management that manages all
available application components, as well as a Node Man-

2

Application Management

Component Management

Node Management

Application
Component 1

Application
Component 2

Application
Component 3

Hardware Interaction
Component 1 (e.g.

sensor)

Hardware Interaction
Component 2 (e.g.

actuator)

Broker

Network

Node 1 Node 2

m
id

dl
ew

ar
e

Network

Broker

Figure 2. Middleware Services

agement that monitors the set of operational nodes. The
task of the Node Management comprises amongst others
the discovery of new nodes and the monitoring (e.g. battery
status) of connected nodes. The Component Management
can be placed similar to the Application Management only
on a subset of the available nodes.
After this short overview of all used middleware compo-
nents, we will discuss some of them in more detail.

2.1 Node Management

The first middleware component, we will discuss in more
detail is the Node Management. This distributed service
is used to collect status information and capabilities of all
nodes in the sensor network. The capabilities of the net-
work comprise the available sensors and actuators, the pro-
vided communication media as well as processing power
and storage capabilities. In addition, run-time data like bat-
tery status, free memory or hardware failures must be mon-
itored. This information can be used to optimize the con-
figuration of the application. Furthermore, the status infor-
mation can be used for maintenance to identify nodes with
heavy load or low energy resource at an early stage and to
make arrangements to replace these nodes or their battery.
To gather all these information, it is essential for the whole
system that each node announces its presence and keeps the
state up to date. A node failure can be detected and reported
by neighbor nodes due to the fact that communication to a
lost node is not possible anymore. For resource-constrained
nodes in the network, a passive version of the node manage-
ment is sufficient. It is passive in the sense that they provide

information about the hosting node but do not collect in-
formation about other nodes. More powerful nodes execute
active versions of the node management that gather the for-
warded information and report changes to the Application
Management.

2.2 Component Management

The Component Management provides information
about all components available for the entire sensor net-
work. We differentiate between Application Components
and Hardware Interaction Component. Hardware Inter-
action Components are offered on each node with dedi-
cated hardware devices. In contrast, it is possible to lo-
cate Application Components on an arbitrary node in the
network. To acquire an optimal service placement in the
sensor network, the Application Management service needs
in-depth knowledge of all interfaces, the provided function-
ality and resources requirements (memory consumption, re-
quired processor time) of each component. This informa-
tion is stored, maintained and provided by the Component
Management. Different application components may real-
ize a similar functionality. Based on the description of these
components, the Application Manager can choose an ade-
quate component based on the available devices and QoS
constraints.

2.3 Application Management

This middleware component handles the configuration
of the application. The configuration depends on the set of

3

available nodes and their status, the set of software com-
ponents, the topology and QoS requirements. Application
components can be placed intelligently within the distrib-
uted system to minimize network load or to balance the load
on the different processors. If for example an average value
out of a set of redundant sensor results is used at a remote
controller, the application component computing this aver-
age value should be placed close to the sensors. A new con-
figuration can be obtained by moving the affected software
components and updating the routing. The latter is done by
reconfiguring the Broker.

2.4 Broker

The component realizing the Broker must be imple-
mented as a local service on each node. The task of this
component is to realize the routing at the level of applica-
tion logic. The routing table of the broker is maintained by
the Application Management to guarantee an optimal rout-
ing. All messages consumed and/or produced on a specific
node need to pass the broker. It is the task of the broker to
decide to which components on which nodes the message
will be forwarded. In contrast to messages for local ser-
vices, the messages for non-local services need to be sent
over network. The message including routing information
such as the receiver, security and reliability requirements is
sent to the Network service for further processing.

2.5 Network Service

The Network Service is used to communicate with other
nodes in the sensor network regardless of the concrete
communication medium. In order to get better efficiency
and less overhead, we adapt the capabilities of this ser-
vice while generating the middleware. With adequate hard-
ware and application knowledge, we can decide which
communication-medium is available on a specific platform
and which ones of them are actually needed or used for the
specific application. This leads to a quite optimal perfor-
mance without the need of any manual adaptations. The
Network Service implements the end-to-end routing by for-
warding the message to the next neighbor on the route and
applying the appropriate communication protocol such as
ZigBee. To achieve secure communication, message de-
and encryption can be activated in this service to transpar-
ently get a secure communication layer for message trans-
port. For better efficiency and because of the resource con-
straints, only critical messages are encrypted. Which mes-
sages are assumed to be critical, can be derived by the ap-
plication model that is described in the next section.

*

*

*

Figure 3. Component Model

3 Domain Specific Language

This section will give an overview of our modeling lan-
guage used for automatic code generation. To allow an
extensive code generation, the modeling language must be
generative and descriptive [10]. The models must have ex-
plicit execution semantics, hardware characteristics need to
be specified and the interfaces of the components must be
described in an unambiguous way. Especially the first re-
quirement excludes the use of standard modeling languages.
The widely used Unified Modeling Language UML lacks
the precision and rigor needed for code generation [9] for
example. Therefore, we decided to design an own domain
specific language that is optimized for the use in our spe-
cific scenario. Thus, it is possible to create a very simple,
but powerful modeling language.
Since it is necessary to describe different aspects of the sys-
tem, we decided to use several sub-models. The hardware
model describes the properties of the hardware, the compo-
nent model describes the interfaces and parameters of the
application components and the application model is used
for the specification of the concrete component interplay.
All the meta-models are specified using the Eclipse Mod-
eling Framework1 (EMF). Several plug-ins for Eclipse are
available to specify the models. In the following subsec-
tions, we will summarize the used models. Due to space
limitation, we will restrict the description on the character-
istics that are necessary for the code generation.

3.1 Hardware Model

The hardware model is used to specify the properties
of the used hardware. The main idea for this model is to
adapt the code generation to the specific platform. In ad-
dition, the model is used for optimization issues. Within
the model, platform specialists can describe essential hard-
ware features like computing power, available memory and
supported communication protocols.

3.2 Component Model

The component developer can specify the component
interfaces within this model. Each interface is described as
a set of in and out ports. Each in and out port can consist

1http://www.eclipse.org/modeling/emf/

4

¿FOREACH app.componentInstance AS ciÀ¿IF ci.node==nÀ
 Main.StdControl ->¿ci.nameÀC.StdControl;

 BrokerC.¿ci.nameÀ ->¿ci.nameÀC;

¿ENDIF-À
¿ENDFOREACH-À

Figure 4. Template

of different parameters/variables. The description of the in
and out ports is used for the interaction between the dif-
ferent components. We use an event based push model for
component interaction similar to data flow diagrams. The
activation of an out port is realized by sending a message.
This message contains elements for each parameter of the
individual out port. The arrival of a message at a specific
component triggers the activation of the according in port.
Figure 3 shows a simplified version of our meta-model.

3.3 Application Model

The interaction between the different components is
specified within the application model. This step comprises
a simple wiring of out ports to in ports. Depending on the
middleware used, the user also has to specify the mapping
of the application components to a specific node or state
criteria used for run-time optimization.

4 Code Generation

One key requirement was the application-specific tailor-
ing of the middleware. We are using a template-based code
generator [1] to satisfy this requirement. Templates are
highly adaptable components. This offers not only the pos-
sibility to adjust some parameters of the template, but also
to generate strongly application dependent components of
the middleware like a routing table of the broker.
Templates can be used to solve certain aspects of the run-
time system, or to combine the results of different templates
to form the middleware. Most templates are platform de-
pendent in the sense that they offer a solution only for a cer-
tain combination of hardware and operating system. There-
fore, also the correct selection of adequate templates is nec-
essary.
Instead of implementing an own code generator, we are
using an existing code generation framework, called ope-
nArchitectureWare2 [20]. OpenArchitectureWare provides
for these problems a special template language, call XPand.
XPand offers the statements DEFINE to declare a new code
generation function and EXPAND to call other generation

2http://www.openarchitectureware.org/

 Main.StdControl ->OnOffLEDC.StdControl;
 BrokerC.OnOffLED ->OnOffLEDC;

 Main.StdControl ->LightClapServiceC.StdControl;
 BrokerC.LightClapService ->LightClapServiceC;

 Main.StdControl ->SoundSensorC.StdControl;
 BrokerC.SoundSensor ->SoundSensorC;

Figure 5. Generated Code

functions during the code generation. OpenArchitecture-
Ware also allows polymorphism as one element to select
adequate templates.
To specify the control flow of the code generation, the com-
mands FOR/FOREACH and IF/ELSE can be used. The
FOREACH statement is used to generate code for each ob-
ject of a certain type that is declared within the model. Fi-
nally, the commands FILE and ENDFILE allow the man-
agement of the generated files. The code generation process
is then rather simple: the adaptation of the templates to the
model is performed using a technique similar to preproces-
sor macros. Text sequences between the different XPand
commands are directly copied to the generated files and
variables allow the access to objects and their attributes.
Figure 4 shows a simple template that illustrates the ba-
sic concept. The template realizes the generation of links
between the components on one node and its Broker in
TinyOS 1.x. The required information can be retrieved from
the model. The generated code is depicted in Figure 5.

5 First Prototype

Within a first prototype, we have implemented the main
features of the approach discussed before. Using our model-
driven development tool, the developer can specify the com-
ponents of the application. The tool supports the automatic
generation of an optimized middleware and integrates the
application components. The current prototype is based on
a static setting of the individual nodes with all nodes in 1-
hop distance. The main task of the middleware is to real-
ize the interaction between the different components on one
node and between local and remote components. There-
fore, only the Broker and the Network Service are necessary
within the middleware.
The logical connection for a simple example is depicted in
Figure 6. The application is executed on the two nodes.
A Hardware Interaction Component reads some value from
the environment and sends the result to an Application
Component. This component computes a control function
and sends the result to a second Hardware Interaction Com-
ponent that outputs the data. The single components interact
only with the Broker. The task of the Broker is to forward
the event to the relevant components.

5

Service Broker Service Broker

I

O I

O

Figure 6. Example Application

We have implemented components to generate this middle-
ware for the versions 1.1 and 2.0 of TinyOS. In addition,
we also implemented components for Windows hosts that
allow the easy implementation of graphical user interfaces
to allow the interaction of the user with the sensor network.
We use ZigBee for node-to-node, RS232 for node-to-host
and UDP/IP for host-to-host communication. The physical
connection is abstracted by the Network Service.

6 Application Example and Evaluation

The approach and developed tools were evaluated in the
context of an example application realizing the control of
a model railway, see Figure 7. For this application, we use
MICAz [5] sensor nodes from Crossbow. Several Hardware
Interaction Components were implemented to access the
different available sensors: brightness, temperature, humid-
ity and volume sensors. In addition, we also implemented
a Hardware Interaction Component to enable the easy use
of the MDA300 [4] data acquisition board of Crossbow that
includes ADC and digital in- and output. These compo-
nents are of course independent of the concrete application,
we had in mind. They can be used in completely different
scenarios.
In addition, we implemented different application compo-
nents to calculate the speed and acceleration of the trains.
As input, we used the data from the ADC and digital IO
channels of the data acquisition board connected to dif-
ferent hardware devices (hall sensor, acceleration sensor).
These components were implemented independent of the
used platform.
Using these different components, we could implement
the complete application. For example, we monitored the
brightness to control the light of the trains for driving in
the tunnels and during night. We also allowed the measure-
ment of the train velocity. To demonstrate the interaction
between the user and the sensor network, we implemented
a signal-horn application. The user can use a graphical user
interface running on a Windows PC to control the horn of

the trains. The components realizing the interaction with
the sensor network were similarly generated by our tool.

6.1 Evaluation

Several criteria can be used to evaluate our approach.
We chose to compare our approach with a standard devel-
opment process regarding the development time, the flex-
ibility, the code size and the code maintainability. Two
teams developed the same application. The first team im-
plemented the application from scratch, while the second
team used our code generator, but had to implement all the
components (Hardware Interaction Components and Appli-
cation Components) and templates for the middleware by
themselves.
Both teams needed approximately the same time to develop
the application. Not surprisingly, the first team could im-
plement the first prototype earlier, since the second team
had to implement the middleware and templates first. How-
ever, this initial effort was compensated during the develop-
ment cycle. One reason for this surprising result was that
by defining a meta-model and a middleware architecture,
the implementation of the templates and components was
straightforward. Of course, the advantages of our approach
will be much more significant, when the templates and com-
ponents are reused in further development processes. Re-
garding the code size, we expected some overhead of the
generated code due to the middleware approach. Neverthe-
less the code size of both systems was of comparable size.
The code developed manually had 310 loc and used 12 kB
of flash memory; the generated code had 400 loc and used
13 kB of flash memory. The reason was that some function-
ality was repeatedly implemented in the different modules
within the first solution. Due to the strict separation of con-
cern, this problem was avoided in the generated code. Also
the maintainability of the generated code was much better.
Due to better design and documentation including the mod-
els, the readability of the code was significantly improved.
Regarding the flexibility, we could experience the fore-
casted flexibility. To support the MDA300 evaluation board,
we had to switch to version 1.1 of TinyOS due to the un-
availability of suited hardware drivers. As consequence,
great parts of the code of the first development process had
to be reimplemented due to the mixture of application and
system logic. In contrast, in the model-driven approach only
the templates had to be adapted to the new operating system,
while the application components could be used unchanged.
Summarily, we could show that our approach has significant
advantages. Especially when using the approach in the de-
velopment of several applications, the development times
can be reduced due to template reuse.

6

Figure 7. Application Example: Model Railway

Figure 8. Evaluation Results

7 Related Work

Different research teams addressed recently the dis-
cussed issue by using macro-programming languages, mid-
dleware and component-based approaches for sensor net-
works [6, 15].
CORBA [14] is a widely used middleware standard, but the
implementations are typically too resource consuming to be
used in the context of sensor networks. The standards Min-
imum CORBA [13] and Real-Time CORBA [12] define a
smaller subset to minimize these constraints. Nevertheless
with a footprint of about 100 kB, the use of CORBA is not
feasible for wireless sensor nodes. The .net MicroFrame-
work [17] is with a footprint of about 300 kB in the same
order of magnitude.
The OASiS Framework[11] aims at developing a frame-
work that allows designing service-oriented sensor network
applications. The design of applications is driven by an
object-centric view, i.e., applications are designed in rela-
tion to a monitored object. This eases the development of
monitoring or tracking applications, which require services
to ”follow” an observed object through the network. In con-
trast to our approach, OASiS does not provide automatic
code generation.

The RUNES[2] middleware provides a component oriented
programming platform for sensor network applications.
The encapsulation in components with well defined inter-
faces allows dynamically reconfigure applications based on
environmental changes, thus providing context aware adap-
tations. However, the design and composition of the indi-
vidual components is still the task of an expert and can-
not be done by the end-user himself. In our approach, the
adaptation of the individual components is automated by the
code generator.
Reusability is addressed in different standards for sensor
networks. For home automation, the Konnex (KNX) [8]
standard is used to ensure the interoperability of different
devices. However, this standard specifies the hardware plat-
forms that are allowed to use and is therefore not extensible.
Furthermore, the standard does not address issues like au-
tomatic code generation or tool support during component
development.
Industrial-process measurement and control systems can be
implemented according to the IEC 61499 [7] standard. Dif-
ferent function blocks can be defined and a graphical user
interface for application development is supported. Simi-
lar to our approach, the standard uses an event-based push
model. However, the standard only addresses the system
and application description and does not standardize the bi-
nary representation or the concrete application interfaces.
Automatic code generation is not supported.

8 Conclusion

In this paper, we proposed an approach using domain
specific languages and template-based code generators to
generate an application specific middleware and to increase
reusability.
For the domain specific language, we are using a
component-based approach. The sensor network applica-
tion is interpreted as a set of components that interact via an
event based push model. Hardware Interaction Components

7

are used to access hardware devices and hide low-level im-
plementation details. Application components implement
the aspects of the application functionality and can be im-
plemented platform independent. To form a concrete appli-
cation, the interaction between Hardware Interaction Com-
ponents and the Application Components must be specified
in a model-based tool. The interoperability in heteroge-
neous systems with different nodes and also operating sys-
tems is realized by a tailored middleware.
The transformation of the model into executable code
and the generation of the middleware are realized by our
template-based code generator. Template-based code gen-
erators are designed to support an easy extension. There-
fore, new templates can be easily added to support further
platforms. In addition, the middleware can be augmented
with new features using this extensibility.
The approach was tested in the context of a model railway.
The implementation was done in two teams: one using stan-
dard methods, the other using the suggested approach. We
could show the advantages of the domain-specific approach,
especially regarding the flexibility in relation to the used
hardware and operating system as well as the code main-
tainability. The development times were similar. The main
reason here was the non-existence of the required templates
for the middleware. We expect a significant acceleration
of the development times, when using our approach in sev-
eral projects due to reuse of templates and components. To
prove this assumption, we will conduct a case study in the
future. This case study will also focus on additional evalu-
ation criteria such as power consumption and required exe-
cution times.
Since we just have started this work, there are a lot of fea-
tures, we have in mind but could not yet implement. In
addition to the Broker and Network Service component, we
have to implement the other components mentioned in Sec-
tion 2. In addition, dynamic reconfiguration can be used to
cope with node failures at run-time. The sensor network can
detect such failures and the reconfigure the network, e.g. by
installing affected components on fault-free nodes.
Furthermore, we want to implement Quality of Service
(QoS) methods into the network. Examples are the ser-
vices that deliver the velocity and the acceleration of our
model trains. To monitor the velocity, the user would typi-
cally select the sensor measuring the velocity. If this sensor
fails, the sensor measuring the acceleration could be used as
backup, but with a lower service quality due to measuring
imprecision.

References

[1] F. J. Budinsky, M. A. Finnie, J. M. Vlissides, and P. S. Yu.
Automatic code generation from design patterns. IBM Sys-
tems Journal, 35(2):151–171, 1996.

[2] P. Costa, G. Coulson, C. Mascolo, G. P. Piccoand, and
S. Zachariadis. The RUNES Middleware: A Reconfig-
urable Component-based Approach to Networked Embed-
ded Systems. In Proc. of the 16th Annual IEEE Intl. Sym-
posium on Personal Indoor and Mobile Radio Communica-
tions (PIMRC’05), 2005.

[3] I. Crossbow Technology. Crossbow imote2.builder.
[4] I. Crossbow Technology. Mda300, data acquisition board.
[5] I. Crossbow Technology. Micaz, wireless measurement sys-

tem.
[6] S. Hadim and N. Mohamed. Middleware: Middleware chal-

lenges and approaches for wireless sensor networks. IEEE
Distributed Systems Online, 07(3), 2006.

[7] International Electrotechnical Commission. IEC 61499:
Function blocks.

[8] International Organization for Standardization. ISO/IEC
14543-3: Information technology - Home Electronic Sys-
tems (HES) Architecture - Part 3: Communication Layers
and Initiation.

[9] I. Johnson, C. Snook, A. Edmunds, and M. Butler. Rigor-
ous development of reusable, domain-specific components,
for complex applications. In CSDUML’04 - 3rd Inter-
national Workshop on Critical Systems Development with
UML, 2004.

[10] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty. Model-
integrated development of embedded software. Proceedings
of the IEEE, 91(1):145–164, 2003.

[11] M. Kushwaha, I. Amundson, X. Koutsoukos, S. Neema, and
J. Sztipanovits. OASiS: A Programming Framework for
Service-Oriented Sensor Networks. In International Con-
ference on Communication System software and Middleware
(COMSWARE 2006), 2007.

[12] Object Management Group. Real-time corba specification,
Jan 2005.

[13] Object Management Group. Corba for embedded specifica-
tion, version 1.0 beta 1 specification, Aug 2006.

[14] Object Management Group. Common object request broker
architecture (corba) specification, version 3.1, Jan 2008.

[15] A. Rezgui and M. Eltoweissy. Service-oriented sensor-
actuator networks: Promises, challenges, and the road
ahead. Comput. Commun., 30(13):2627–2648, 2007.

[16] SOS. https://projects.nesl.ucla.edu/public/sos-2x/doc/.
[17] D. Thompson and C. Miller. Introducing the .net micro

framework, 2007.
[18] TinyOS. http://www.tinyos.net/.
[19] M. Torngren, D. Chen, and I. Crnkovic. Component-based

vs. model-based development: A comparison in the context
of vehicular embedded systems. In EUROMICRO ’05: Pro-
ceedings of the 31st EUROMICRO Conference on Software
Engineering and Advanced Applications, pages 432–441,
Washington, DC, USA, 2005. IEEE Computer Society.

[20] M. Voelter, C. Salzmann, and M. Kircher. Model Driven
Software Development in the Context of Embedded Compo-
nent Infrastructures, pages 143–163. 2005.

[21] M. Volter, A. Schmid, and E. Wolff. Server Component Pat-
terns: Component Infrastructures Illustrated with EJB. John
Wiley & Sons, Inc., New York, NY, USA, 2002.

8

