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Abstract—Model based development has become the state
of the art in software engineering. Unfortunately there are
only few model-based tools available for the design of fault-
tolerant embedded software: while there exist many different
code generators for application code, the generation of system
aspects like process management, communication in a distributed
system and fault-tolerance mechanisms is very complex due to
the heterogeneity of the embedded systems.

We think that the design of an all-embracing code generator, that
supports a priori all platforms (the combination of hardware,
operating system and programming language) is impossible.
Rather it is necessary to concentrate on a code generator
architecture that allows an easy extension of the code generation
ability.

In this paper we present one possible solution: generating the
code on the basis of templates, that solve different recurring
aspects of safety-critical embedded software. By the use of a
technique similar to preprocessor macros, these templates can
be implemented in an application independent fashion. The code
generator can then adapt these templates to the application by
extracting the necessary information out of the model provided
by the application developer.

A first realization of this approach is also mentioned in this paper.

I. INTRODUCTION

The development processes for classical software and fault-
tolerant software differ significantly. Fault-tolerant software
is typically embedded within a distributed system consisting
of different hardware and the software has to deal with
diverse sensors and actuators. In many cases even different
operating systems are applied within one embedded system.
This heterogeneity leads to the fact that classical approaches of
software engineering, like the model based paradigm [1], can
not be applied [2]. Especially tools that allow an automatic
code generation or are based on libraries are typically not
suited for this heterogeneity. While there exists a huge variety
of tools that cover the functional aspects of applications, e.g.
Matlab/Simulink [3], there are only very few tools available
that cover system aspects, like communication within a dis-
tributed system, process management and scheduling or fault-
tolerance mechanisms. In addition these tools are typically
designed only for a limited number of platforms. To our
understanding a platform is the combination of hardware,
operating system and programming language.

On the other hand there is a great need for exactly this kind
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of code generation. Since safety-critical software typically
encapsulates domain expertise the software is often designed
by engineers who are experts in the application domain and
not in the domain of safety critical software and real-time
systems. Therefore tools that help to generate automatically
large parts of the system are desirable.

It is obvious that it is impossible to design such a code
generator that supports a priori all platforms. Rather the code
generator must be designed in a way that the generation
ability is easy to extend, even by the user. In this paper we
present such a code generation architecture: we separate the
code generator functionality from the code generator core.
The generation functionality is based on templates that can
be edited or extended; even new templates can be added.
A single template can provide a solution for an aspect of
the system or can be used to combine other templates to
form a run-time system. Examples for the different aspects
of the system are templates for fault-tolerance mechanisms
(e.g. voting), process management (scheduling, inter process
communication), mechanisms within the distributed system
(communication, temporal synchronization) and time or event
management. The code generator core can adapt the templates
to the application requirements by extracting the necessary
information out of the application model specified by the
application developer.

We provide such a code generator with a basic set of templates
in the project Zerberus [4]. In case the provided templates
are not applicable for the desired application due to platform
constraints, new templates can be added or existing ones can
be changed. In many cases changing a template can be done
very easily. One example is the usage of another operating
system. In case only standard system calls are used within the
component, the changes are typically restricted to the renaming
of the system calls and the adaptation of the arguments. The
possibility to add new or change existing templates leads to a
maximum of flexibility and simultaneously allows a maximal
rate of automatic code generation. By generating source code
rather than machine code a possible certification of the applica-
tions is simplified. Following the certification guide lines, like
DO-178B [5], a code generator has to be certified to avoid
the certification of the generated code. Since a certification of
machine code is very complex, such a certification should be
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avoided. By generating source code the certification becomes
much easier. The mapping to machine code can be done by
the use of existing qualified compilers.

In the following sections our approach is discussed in more
detail. Section II gives a summary of related approaches to
develop safety-critical embedded software. Afterwards we give
more details about our approach, the template-based code
generation, in section III and describe one first realization in
section IV. The paper is summarized in section V and future
work is described.

II. RELATED WORK

Different research projects focus on the issue of modeling
and design of embedded fault-tolerant software. Unfortunatly
most of these projects are restricted to a specific platform and
therefore the application range is limited [6].

One of the most successful projects in the domain of fault-
tolerant applications is the time-triggered architecture (TTA)
[7]. TTA is a framework for the design and implementation
of distributed fault-tolerant applications with a focus on the
automotive and aviation industry. TTA provides different ser-
vices like predictable communication with small latency, clock
synchronization and membership service [8]. The approach is
based on a hardware solution, the so-called TTP/C controller
[9], running the time-triggered protocol (TTP) that realizes
time-triggered communication on redundant communication
channels. Because TTA concentrates only on a fault-tolerant
communication, the implementation of mechanisms for the
toleration of other error sources has to be done by the
developer itself. Another disadvantage of TTA is the restriction
on specialized hardware. This constraints the application area.
Another approach is to use libraries that provide functions
to solve recurring problems in the domain of fault-tolerant
computing, like synchronization and voting. One representa-
tive of this approach is Erlang [10]. Erlang is a programming
language designed for programming real-time control systems.
The language offers many features that are more commonly
associated with an operating system than a programming
language like concurrent process, scheduling or garbage col-
lection. Fault-tolerance, fail-over, take-over is built right into
the platform and concurrent processing is one of its strengths.
A disadvantage of Erlang is the necessity to use Erlang as pro-
gramming languages. Like other approaches based on libraries
the restriction on a specific programming languages reduce
the options for the implementation. Another big disadvantage
of libraries are problems concerning a certification. For the
certification process the source code of the libraries must either
be available or the libraries must be already certified. But since
the requirements regarding the certification differs for each
application area [11], the existence of a certification in the
specific application area is very unlikely.

The issues of certification are not considered in most ap-
proaches based on code generation. A qualifiaction of the code
generator is desirable since this would limit the certification
effort to a certification based on the model and the application
functionality. Unfortunatly the code generators are typically
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Fig. 1. Code Generation Architecture

very complex systems that are very hard to verify. Within
our approach the code generation functionality lies within the
templates, while the code generator itself does only perform
simple adaptations. Thus a certification of the code generator
becomes easier and the code generation ability can be easily
expanded by introducing new templates.

III. TEMPLATE-BASED CODE GENERATION

As already mentioned in the preceding section there are

many recurring problems in the context of fault-tolerant em-
bedded software like process management, scheduling, com-
munication or fault-tolerance mechanisms. Solutions for these
problems already exist but the heterogeneity of embedded
systems contradicts the attempt to reuse components solving
these probems.
In this paper we present a solution to this issue, called
template-based development. Instead of generating machine
code directly from an application model like other approaches
or trying to reuse preimplemented components/libraries, we
use application-independent templates that can be automat-
ically adapted to the application requirements on the base
of the model. The big advantage of this approach is the
flexibility regarding the code generation since the generation
ability can be extended very easily by new templates. In case
a new platform should be supported, existing templates can
be adopted to this platform very often with little effort. For
example in case a new operating system needs to be supported,
the changes are typically restricted to the adaptation of the
system calls. A simple example for such a template is depicted
and explained in section IV-D.

Templates are already used in many other areas of develop-
ment processes: one example is the development of graphical
user interfaces. State-of-the-art development tools allow a
graphical design (model) of the GUI. The developer can
modify the design by drag-and-drop functionality and specify
the actions, e.g. the effect when a button is pressed. Subsequent
the development tool can automatically generate source code
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out of the graphical design/model that the developer can
modify to adopt to specific application-dependent problems.
Another example is the generation of class templates out of
UML class models.

In comparison to other approaches template-based develop-
ment has the advantages that is is not restricted on a specific
platform, that all recurring problems within the domain of
fault-tolerant embedded software can be addressed and that
there are in principle no constraints regarding the application
area.

The code generation process is depicted in figure 2. In the first
step, the application developer has to specify the application
model. This model contains for example information about
the software architecture, the tasks of the application, the
communication between tasks and the environment and tim-
ing constraints. In addition information about non-functional
system aspects like the used hardware, operating system,
programming language and network settings are neeeded for
an appropriate selection of the right templates. We provide
a model parser to check the correctness of the model and
store the information within a database. There are also some
tests performed to check whether the required templates are
available or whether the developer has to implement new
ones. The second step for the application developer is then to
implement the application code, like control functions. This
job can be also performed by using other model-based tools
like Matlab/Simulink. Finally the template parser adapts the
templates with the information contained in the database and

Generated code

Code Generation Process

combines the generated code with the code implemented by
the application developer. The result of the generation process
is source code that can be compiled and executed immediately
on the desired platform.

IV. ZERBERUS

Within the Zerberus project [4] we have developed soft-
ware engineering tools that exemplifies the realization of
our approach. As hardware architecture we have chosen a
triple-modular-redundancy (TMR) system built with standard
components. This architecture allows the application of voting
and failure masking as fault-tolerance mechanisms. The main
advantage of these mechanisms is the possibility to implement
them in an nearly application-independent way. In addition
all error types can be covered if N-Version programming
techniques and hardware diversity are applied [12].

The intended applications are simple control applications with
real-time constraints, that could be implemented in a non-fault-
tolerant way on a standard computer. Applications we have in
mind are for example the control of wind mills, of industrial
robots or control applications in the medical domain.

The main goal of Zerberus is to reduce the development effort
to the implementation of the pure application functionality.
The realization of the fault-tolerance mechanisms, as well as
the process management (timing, scheduling) and the commu-
nication between processes, is realized automatically by pre-
implemented templates (run-time systems) that are adopted to
the application by the Zerberus code generator.
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The adaptation is based on a functional model that must be
described by the application developer. The functional model
contains in Zerberus the specification of the application tasks,
the interaction between these tasks, the I/O of the system,
as well as the timing constraints. Zerberus provides with
the Zerberus Language [13] a possibility to describe that
functional model.

In the next two subsections we give a short introduction
into the Zerberus Language and we explain the applied fault-
tolerance mechanisms.

A. Zerberus Language

The Zerberus Language allows a simple specification of
the functional model. For an appropriateness for the use with
failure masking and voting several requirements are posed on
the language. First of all the language must be suited for
replica determinism. This is a non-trivial issue since different
platforms and implementations of the application can be used
within one system. To achieve replica determinism neverthe-
less, the Zerberus Language is based upon the time-triggered
paradigm [7]. Our approach resembles Giotto [14], a time-
triggered language used for the specification of distributed
real-time systems. In contrast to our approach applications in
Giotto are interpreted on two virtual machines: the embedded
and the scheduling machine, while in Zerberus executable
code is generated. Another difference is the focus of the two
projects: Giotto concentrates on distributed systems, while we
are focussing on fault-tolerant applications. Due to this differ-
ences an automatic generation of fault-tolerance mechanisms
is not foreseen within the context of Giotto.

Using the time-triggered approach, replica determinism can be
achieved by using the knowledge about the execution times
[15] : at specific points in time a deterministic behavior of
the system is guaranteed, while between these points in time
the process execution and scheduling can be carried out in
different ways on the individual units.

The time-triggered paradigm has also the advantage that there
are previously known points in time when the execution of
voting and temporal synchronization algorithms have to be
performed. This is the prerequisite for a successful application
of distributed voting and synchronization algorithms.

The second requirement on the language is the support of
an automatic state synchronization and voting. This state
synchronization is necessary to allow a repaired unit to rein-
tegrate into the system during system execution. Zerberus
supports the state synchronization and voting by separating
the functionality of the application from the application’s state.
Thus these states can be simply compared during voting, while
an integration is possibly by copying the state of a fault-free
unit to the integrating unit.

To support simplicity and a fast learning process, the language
consists of only seven different objects that are explained in
the following (a comprehensive description can be found in
[13]):

Tasks represent the application functionality, e.g. a control
function, and consist of sequential code that is executed in a

time-triggered manner. All tasks are executed periodically and
the developer can specify the logical start and end time. At
the logical start the tasks reads the inputs and at the end of the
logical execution the results are output. The actual execution
of the task on the CPU is scheduled by the Zerberus run-
time system and is transparent to the developer. The input and
output of the tasks is performed by using ports. A port is a
global variable that can be accessed in time-triggered manner.
The values of the ports represent the application state and can
be therefore used for voting and integration.

The interaction of the system with the environment is also
performed via ports. While sensors are functions to read inputs
from the environment and store these in ports, actors are
functions to output values of ports to the environment. Both
sensors and actors are also executed time-triggered.

To allow also an adaptation of the applications behaviour to the
applications mode, modes, modechanges and guards can be
specified. Using these mechanisms the execution of the tasks,
sensors and actors can be steered.

Example: functional model for a PID-controller For
illustration purpose we use the functional model of a PID
controller, see fig. 3. The PID controller uses the results of
a sensor that is invoked every millisecond and that stores the
result in the sensor result port. In addition the PID controller
uses the values of two ports to calculate the differential
part and the integral part. The results of the PID controller
execution are written to the result port as well as to the ports
used for the integral and differential part. Within this example
we assume that the set point is constant and can be therefore
stored within the controller function. In case the developer
also wants to have the possibility to change this set point, he
would have to use one additional port. The real Zerberus code
is depicted in figure 4.

B. Fault-Tolerance Mechanisms

Based on the TMR architecture, Zerberus realizes fault-
tolerance mechanisms like failure masking and voting. The
hardware redundancy allows the toleration of one arbitrary
failure within one of the redundant units. Design errors within
the software can be tolerated if N-Version programming is
applied. Although N-version programming is typically not
applied due to the high development costs, the restriction to
the implementation of only the application-dependent code
by using Zerberus makes N-Version programming a matter
of choice. In case the output is performed by only one unit
at a time, errors within the actuator can not be tolerated.
We assume within our application that the actuator meets
the safety requirements, but nevertheless we have realized a
functionality to supervise the output, so that at least reactions
to output errors by the system are possible.

The realization of the fault-tolerance mechanisms is based on
well-known algorithms and we realized functions for voting,
exclusion of erroneous units, reintegration of repaired units as
well as temporal synchronization.

The voting is performed at least everytime before the system
performs an output, but the developer can also specify a higher
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Fig. 3. The functional model of a PID controller: a graphical notation

voting frequency. The voting itself is executed in two rounds to
allow the usage of unreliable communication channels: in the
first round each computer sends the state information (values
of the ports, the current mode and the mode unit) to the other
computers. To limit the network traffic the developer has also
the chance to restrict the number of transmitted ports. The
received state information of the other redundant units are
compared with the own state. Due to timing differences within
the allowed temporal synchronization interval and to measure-
ment errors the values of the ports may not be deterministic.
To handle this issue, Zerberus also supports interval voting
for ports. In case interval voting is applied, the developer has
to specify the valid bounds for a specific port. The results of
the voting are transmitted to the other units within the second
round, thus enabling the reconstruction of missing messages.
The results of the voting are the partition of the redundant
units into correct and erroneous units, as well as the selection
of the unit that has to perform the output, in case only one unit
should perform the output. A unit is classified as erroneous
in case it does not agree with the majority of votes. In this
case this unit is excluded from the execution and can perform
application-dependent error recovery algorithms.

After a successful completion the repaired units can reintegrate
into the running system. The reintegration can take place in
the next voting round at the earliest by listening to the voting
messages and adopting the current application state. In case
not all port values are submitted in the voting messages, the
integrating unit can also send a request for transmission of the
remaining port values. An integration is only allowed if the
unit receives consistent states of the majority of units. Since
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the system state is influenced by the values of the ports and by
the results of running tasks, a reintegration is only allowed in
case no task is currently running. This is true at the beginning
of a new mode round. Both algorithms, the voting and the
integration, are based on algorithms suggested in [12].

The temporal synchronization at system start is similar to the
algorithm used in TTP [9]. During system execution the voting
messages are also used for the synchronization algorithm: by
means of the expected and the actual arrival time of the voting
messages a logical global clock can be computed [16], [17].
The precision of the temporal synchronization is limited by
the maximal network message delay and by the precision
of the system clock. Within our tests we achieved maximal
synchronization errors below 200 us.

C. Run-time System

Instead of providing multiple templates that solve parts
of the system we developed a combined run-time system
template. We currently offer two such run-time systems for
the programming languages C and C++ both using Vx-
Works. These templates can be transformed into application-
dependent code during the code generation process.

The run-time system covers all system aspects of the fault-
tolerant application: a control layer realizes the reaction to
failures within the system, the system layer executes the ap-
plication as specified in the functional model and executes the
fault-tolerance mechanisms like voting, exclusion of erroneous
units and reintegration. The communication within the TMR
system and the temporal synchronization is performed by the
communication layer. Finally the scheduling layer realizes an



/* Code for the PID controller®/

*ports*/

port SenseResult

{
type=INT16;
compareTime=NEVER;
initialValue=0,

}

port IntegralPart

{
type=INT186;
compareMode=compare();
initialValue=0;

}

port DiffPart

{
type=INT16;
compareMode=compare();
initialValue=0;

}

port PIDResults

{
type=INT16;
compareMode=compare();
initialValue=0;

}

[*actors and sensors*®/
sensor Sens

{
function=read();
out=SenseResult;

}

actor Output

{
function=write();
in=PIDResults;

}

Mtasks®/

task PIDCaontroller

{
function= contral();
in= SenseResult;
inout=IntegralPart, DiffPart;
out=PIDResults;

}

mode Control

{
startmode;
task= PIDController 1;
sensor= Sens 1;
actor= Qutput 1;
duration= 1000000 ns;

}

Fig. 4. The functional model coded in the Zerberus Language

Earliest-Deadline-First scheduling [18], [19] of the application
tasks realized in the task layer.

D. Zerberus Tags

We use a technique similar to preprocessor macros to allow
the implementation of application-independent templates. All
application-dependent data is replaced by so-called Zerberus
Tags. There are two different types of tags: simple tags and
control flow tags. While simple tags can be replaced directly
by application-dependent data, control flow tags manipulate a
code range. Two different control loop tag types are offered:
for-each tags and if tags.

Thus a templates consists of source code augmented with
Zerberus tags. These tags are replaced with application specific
content during code generation. Because the usage of the
Zerberus tags is very hard to depict within one simple figure
using source code, we use a simple example based on natural
language illustrated in figure 5. The use of natural language
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demonstrates the fact that the tags are not based on a certain
programming language, which is also necessary in the context
of comments or documentation.

In our example we want to enumerate the different tasks
with their ports: by using the <$FOR_EACH_TASK$> tag,
the code until the corresponding <$END_FOR$> tag is
written into the output file for each task available. The
effect of tags is always context related: the succeeding
<$FOR_EACH_INPORT$> tag is interpreted in the context
of the current task.

E. Simple Control Application Example

We have tested the run-time system in the context of a
simple control example: the control of a rod by switched
solenoids, see in figure 6. This rather simple application
demonstrates the advantages of our approach. The whole code
including the functional model as depicted in figure 4 that
had to be implemented by the developer consists of less than



<$FOR_EACH TASK$>Task <$TASK NAMES>

has the following ports as input:

<SFOR_EACH INPORTS> Port <S$PORT NAMES>
<SEND_FORS>and writes the results to the ports
<:$EGR_EF—LCH_G'JTPURT$> Port <$PORT_NAME.$>
<3ZEND_FOR3>

<SEND FORS>

Fig. 5.

Fig. 6. Rod controlled by switched solenoids

100 lines of code. We achieved control response times of
1MHz with our setup (AMD Athlon processors,ethernet). To
achieve better control response times a faster communication
medium and a better clock resolution, for example by the use
of external timers, would be necessary.

We also used different run-time systems written in C and C++
to demonstrate the possibility to use N-Version programming
techniques within Zerberus. The integration was performed
smoothly due to the strict adherence of the protocols offered
by Zerberus.

V. CONCLUSIONS AND FURTHER RESEARCH

Classical software engineering tools based on code gener-
ation, middleware approaches or libraries can not be applied
within the context of safety critical embedded software or are
limited to only a specific application domain due to inflexibil-
ity. The requirements in the context of fault-tolerant systems
like generality concerning the usable platforms, automatic
code generation of standard system functionality, flexibility
in the sense that the system can be adopted to application
requirements in all phases of the engineering process and
support concerning certification issues are not satisfied by
existing tools.

Within this paper we presented an approach to fulfill these
requirements. The use of application-independent templates
that are mapped automatically to directly compilable source
code offers diverse advantages. The templates can be easily
adopted and extended or new templates can be implemented
to extend the application area. The automatic code generation

Task PIDController has the
following ports as input:
Port SenseResult
Port IntegralPFart
Port DiffPart
and writes the results to the ports
Port IntegralPart
Port DiffPart
Port PIDResults

Zerberus tags and the generated code

reliefs the developer of implementing great parts of the system.
Certification issues are mitigated since all source code is
available to the developer.

A first realization of our approach was done with Zerberus.
Based on the simple case of TMR-systems the advantages
of our approach could be shown. The next steps within our
research will be the extension of our approach to arbitrary
distributed system architectures, the modularization of the
Zerberus run-time systems and the support of further fault-
tolerance mechanisms that are not based on TMR-systems. We
are also planning to apply our approach within real industrial
projects to point out the feasability.
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