EFFICIENT MOTION PLANNING IN HIGH DIMENSIONAL SPACES:
THE PARALLELIZED Z*-METHOD

Boris Baginski

Technische Universitdt Munchen — Robotics and Real-Time Systems Group
Orleansstr. 43, D-81667 Miinchen, Germany
e-mail: baginski@informatik.tu-muenchen.de

ABSTRACT — We present a method to plan collision free paths for manipulators with any
number of degrees of freedom. The method is very efficient as it ommits a complete representa-
tion of the high dimensional search space. Its complexity is linear in the number of degrees of
freedom. A preprocessing of the geometry data of the robot or the environment is not required.
In the planning process, several more or less independent partial tasks of differrent complexity
can be identified, thus allowing to parallelize the algorithm in several ways to increase the
efficiency towards real-time operation in most practical cases. This paper gives an overview of

our recent concepts and implementations.

KEYWORDS: Robotics, Path Planning, Parallel Algorithms, Autonomous Robots

1 INTRODUCTION

The Z3-method is part of the research ef-
forts of our group to develop intelligent and
autonomous robot systems that can be com-
manded on the task level. An important part of
such a system is a motion planner that connects
positions that are required by a higher level
planning system with collision free and physi-
cally possible trajectories. Within the presented
project we want to use parallel computation to
increase the efficiency of the planning'.

Robot motion planning is a very complex prob-
lem. Even if we consider the case of one moving
robot in a static environment only, the dimen-
sionality of the search space for the robot’s mo-
tion equals the number of its kinematic degrees
of freedom (DOF). Any universal robot needs
at least six joints to operate unconstrainted in
its workspace. The space of possible joint val-
ues of a robot is called its configuration space
(c-space). All positions that result in collisions
with the workspace obstacles imply the c-space
obstacles. All possible robot motions are curves
in free c-space [7].

There are several different approaches to mo-
tion planning. All attempts to build up com-
plete maps of the c-space fail for more than 4-5

degrees fo freedom [8]. Even at a coarse reso-
lution, the exponential complexity (in time and
space) prohibits this kind of approaches for real
robots. Another concept is to build up a ran-
domized graph in the c-space [6, 4]. A given
number of subgoals are placed randomly and
connected in a neighbourhood by simple local
search strategies (e.g. check linear connection
for collision). Thus the topology of the c-space
can hopefully be covered without exponential
complexity. After this preprocessing, motion
planning means just finding connections from
start and goal to the graph, and graph search.
But the required preprocessing may take very
long for complex environments (at least in the
order of minutes or hours).

We are seeking motion planning algorithms
that can take and immediately use the geome-
try data, as this data often gets available when
instant planning required. This is the case for
service robots that use sensors to build up
an environment model, and another example
are mobile manipulators in industrial environ-
ments. All geometry is known, but as the po-
sition of the manipulator arm itself is time de-
pendent, no c-space map can be constructed.
Another requirement for our motion planning
system is the ability to handle a high number

'This work is supported by the Deutsche Forschungsgemeinschaft, number ST 364/2-1.

A

Figure 1: A: The geometry model is expanded to reduce the number of collision tests. B: An example of
a path planned with slide steps in a 6 DOF environment. C: A very complex environment and

robot modell in an industrial environment.

of degrees of freedom, e.g. to plan motions for
the manipulator and its mobile platform simul-
taneously.

Another possibility to address the motion plan-
ning problem are the local approaches. The idea
is to move from the start position towards the
goal, and to pass obstacles along the way, only
considering ’local’ information. One method is
the so-called potential field approach [7]. The
goal implies an attractive force, the obstacles
are repulsive. The robot moves in this force
field, following the gradient. The major draw-
back of this method is to get stuck in local min-
ima of the potential field, thus requiring ran-
dom escape or random exploration techniques
to avoid the complexity of global search [2].

2 THE Z3-METHOD

The Z3-Method uses a hierarchical combination
of a modified potential field planner and ran-
dom global exploration. The lower level local
planner tries to slide along obstacles to pass
them, the upper level uses randomly placed
subgoals to overcome local minima of the local
planner, avoiding the high complexity of global
search. The method was developed a few years
ago and is continously improved [5, 1]. In the
following, we give an overview of our current
path planning system. In the third section, we
discribe our algorithm to gain maximum effi-
ciency with parallelization.

The only requirement for the Z3-method is a ge-
ometric and kinematic model of the robot and
its environment. This is used to check single
positions and segments of paths for collision,

as we only implicitely plan in the c-space. The
efficiency of these tests are the key factor for
the performance of the overall planning system.
Collision detection is the lowest level and de-
scribed in the next paragraph, thereafter we ex-
plain the local planner and the global planner.
The quality of the planned paths is increased
through local optimization, the principles are
explained in the fourth paragraph of this sec-
tion.

2.1 Collision Detection

A manipulator is composed out of a chain of
rigid parts, connected with joints. To check
parts for collision with the environment, we
use a hierarchical representation of the environ-
ment. All facets of the geometry model are en-
closed by an axis-parallel bounding box (that
is represented with just two points). These
boxed facets are the leaves of a binary tree of
hull boxes that is constructed bottom-up. At
any step of the construction, the two nodes
that have the smallest increase of volume when
linked together are united to form a new node of
the tree. Collision detection is executed by in-
tersecting the bounding box of the moving part
with the tree, beginning at the root node. All
child trees of intersecting nodes are tested re-
cursively. This test is very fast if the parts are at
a certain distance, and it is fast as well to locate
the possibly intersecting facets at the bottom of
the tree.

For path planning, it is not sufficient to check
single positions for collision, but whole paths. In
principle, this would require an infinite number

c-space
obstacle 5

c-space
obstacle

start

c-space
obstacle

c-space
goal obstacle goal

A B

C D

Figure 2: A: Local search for collision-avoiding positions to execute a slide step. B and C: Repeated slide
steps can solve the planning locally. C: The path is smoothed through local optimization.

of tests along the path. Two possibilities exist
to avoid this. One is to use distance compu-
tation at each position, and to ensure that no
point of the concerned robot part moves fur-
ther than the measured distance in the next
step. The major drawback is the expense of this
kind of test, as it is much more complex than
simple collision detection. The other possibility
is to enlarge the geometry model of the robot
to ensure a protective shield of a certain thick-
ness d. If the robot part does not collide at two
positions that are less or equal 2d apart, the
straight motion inbetween these two positions
is collision free.

We use the latter principle. The motion of the
robot is not discretized and all parts are checked
at intermediate positions, but the motion of
each part of the robot is discretized individ-
ually. In general, the links close to the base
move shorter distances than the links closer to
the tool. We use an approximation scheme that
calculates a joint step with an upper bound for
the cartesian motion of a link out of the carte-
sian motion and the joint step in the previous
discretization step. This ensures collision free
paths with a minimum number of collision tests.

To further reduce the number of collision tests,
we use several expanded models with different
thicknesses for the protective shield. Up to now,
the shield construction is applicable only for
simple geometry models, but these tests prove
the potential of this concept, as it is able to re-
duce the number of collision detections to 10%,
compared to fixed size shields. Fig. 1 A visual-
izes high level shields for a 2 DOF robot.

2.2 Local Planning

The local planner tries to move the robot on
a straight line in c-space from start towards
goal. If a collision occurs, the exact point of
intersection is approximated through a depth-

limited bisection. Then the planner calculates
and tests avoiding steps. The directions are cho-
sen orthogonal to the current straight direction
and orthogonal to each other. Thus they are the
positive and negative base vectors of a hyper-
plane, constructed orthogonal to the straight
motion in the collision point. For a robot with
n degrees of freedom, their number is 2(n — 1),
resulting in a linear complexity. The step length
of the avoiding steps is chosen heuristically and
proportional to the thickness of the protective
shield. Fig. 2 A illustrates this computation in a
2-dimensional c-space. The last discretized step
is 1, 2 would be the next but collides. Bisection
(3 and 4) finds a point close to the surface. Or-
thogonal directions are calculated and tested (5
and 6).

If a collision free avoiding position is found
and can be reached, the planner starts again to
move straight towards the goal. If neccessary,
additional slide-steps are executed (see fig. 2 B
and C). The local planning reaches the goal in
many cases, but it may get stuck if it can not
find an avoiding position that is closer to the
goal than the last straight line starting point
or none of the avoiding positions is collision
free (dead end). If there are multiple protective
shields and the current active shield is not yet
the base layer, the level is reduced and planning
is continued. If everything fails, the reverse di-
rection from goal to start is planned, as it may
avoid the local minimum.

2.8 Global Planning

If local planning can not solve a task, the global
planner is used to create subtasks to find a so-
lution through combination (see fig. 3). A set
of M unconnected random subgoals is created
at arbitrary positions in free c-space. The local
planner is called to find connections to these
subgoals, one after another. Whenever a con-

C>goal C>goa|

C@OO

O start

start

goal goal
O

o O

start start

A B

C D

Figure 3: The global planner constructs a subgoal tree, growing from start into the set of random subgoals.
Bright lines indicate failure, dark lines success of local planning.

nection to one of the subgoals is found, the con-
nection to the goal is tested. In most cases, a
solution can be found with one subgoal. But if
this fails, all subgoals that were reached from
the start are tested for connections with all un-
connected subgoals, and again, if a connection
is found, the connection to the goal is planned
locally. If necessary, this procedure can be re-
peated, and it can be interpreted as a tree
that is growing into the subgoal set. The search
depth is limited, and if it is reached or no fur-
ther leaf can be found, the global planning ter-
minates with failure.

In realistic environments, all tasks could be
solved with M=25 random subgoals and a
search depth limited to 4 [1]. The planning time
is mostly dependent on the complexity of the
geometry model, and, of course, the task dif-
ficulty. The planning is not complete (proba-
bilistic completeness would be possible with an
unlimited number of subgoals and an unlimited
search depth), but it is sucessful in all practical
cases it was applied to. It is not suitable to solve
magze-like problems, but in typical manipulator
environments with large areas of free space, so-
lutions can be found reliably and fast. The com-
putational complexity of the global planner is
linear in the number of subgoals, and as this is
fixed, the overall complexity of motion planning
with the Z3-Method is linear in the number of
degrees of freedom.

2.4 Optimization

A planned path is not optimal, because the slide
steps create a jagged motion close to the obsta-
cles, and the random subgoals lead to detours.
We have developed a very efficient scheme to
smooth a path based on local optimization [3].
Only very simple polygon manipulations are

used. In a first attempt, the slide steps are
straightened by replacing them as far as pos-
sible by longer line segments. In the following
iteration, every set of three corner points of the
path is examined repeatedly. If the direct con-
nection is possible, the inner point is removed.
If there is a collision, the two sides of the tri-
angle are intersected in the center and the re-
sulting connection is tested. This bisection is
repeated until a suitible connection is found to
cut the tip of the triangle. This whole process is
repeated for all triangles in the path until it can
not be continued due to obstacles or a sufficient
smoothness is reached, see fig. 2 D.

3 PARALLEL MOTION PLANNING

As we are unable to completely analyze the
highdimensional c-space, all possible tasks and
all possible szenarios, we can analyze the mo-
tion planning only qualitatively, not quantita-
tively. In general, many tasks are solved with
local planning only, in short time. Most of the
remaining tasks require one subgoal, out of a
small set, planned in an order of magnitude
longer time. Few tasks require two or more sub-
goals, yielding even longer planning times. Very
few task cannot be solved. The other domi-
nant factor of the planning time is the com-
plexity of the environment and the robot, that
can be quantified through the number of facets
in the geometry model. In industrial scenarios
with 500 facets we measured an average plan-
ning time of about 0.lsec and a maximum of
2.6sec. In an environment consisting of 17,500
facets (see fig. 1 C) the average planning time
is about 2msn, the maximum is > 1h.

A promising way to reduce the planning time is
to parallelize the algorithm. We implemented
our planning system as a parallel application

[]
goal goal goal

([]
goal\.

start X ~s~l
SO e
~
sta>. start start
A B C

Figure 4: A: Parallel execution of straight line collision detection results in (almost) linear speedup. B and
C: If there are obstacles along the straight line, some intersection points might not be accessible
and the more expensive slide steps are not accelerated.

based on PVM [9], it allows us to link any
number of workstations together to plan one
task. Nowaday, clusters of workstations are the
standard architecture, the number of comput-
ing nodes is in the order of 10! to 102. The
parallelization has two main targets: maximum
overall accelleration of all kinds of tasks, and
best possible scalability to the number of nodes
available. In the following, several paralleliza-
tion possibilities are explained for local and
global planning, and in the third paragraph an
integrated, adaptive scheme is presented.

3.1 Parallel Local Planning

The one-way communication time in a typical
ethernet environment is in the order of 10ms,
thus the smallest granularity of parallelization
is at the level of at least one or a few colli-
sion tests (they run in the same order of time
in complex environments and much faster in
simpler environments). An obvious way to dis-
tribute the local planning process is to calculate
equidistant intersection points and to plan the
subtasks independently. If there is no collision
along the straight line connection, almost lin-
ear speedup can be obtained (see fig. 4 A). But
if there are one or more obstacles along that
line, two problems occur: Some of the intersec-
tion points may be in collision, yielding longer
partial tasks in the case where slide steps are
required (see fig. 4 B,C). Thus the speedup is
limited, and if a dead end occurs, several of the
partial tasks closer to the goal may have been
planned in vain.

Another approach is to parallelize the slide
steps only. The maximum number of avoiding
step tests for an n-DOF Manipulator is 2(n—1),
the average depends on the obstacle topology,
but is linear dependent on n. So we use one
node for the straight motion, in case of colli-
sion all orthogonal avoiding steps are calculated

and the path segments are tested by a dedicated
number of nodes simultanously.

3.2 Parallel Global Planning

The global planner can be parallelized by dis-
tributing local planning tasks onto the comput-
ing nodes, scheduled by a coordinating node.
The tasks are priorized, and the local planners
can be interrupted to execute partial tasks of
higher priority. The first step is to plan con-
nections from the start to as many subgoals as
nodes are available. If a subgoal can be reached,
it is immediately tested for connection with the
goal, these partial tasks have the highest pri-
ority. The next highest priority is assigned to
the connections between start and each sub-
goal, below them are the connections between
reached subgoals and unconnected subgoals.
The scheduling assures that all nodes are work-
ing at all times, and that the most promising
connections are checked first.

Another possibility is to run several instances of
the global planner in parallel, each planning in-
dependently with its own subgoal set. The com-
putation time for tasks that require subgoals
is distributed through the random component,
this kind of parallelization reduces the expected
value and the variance.

3.8 Adaptive Parallelization

The local parallelization is only efficient for very
simple tasks, because it requires an enormous
amount of communication if several houndred
or thousand runs of the local planner have to
be executed to solve the task. In general, the
best granularity is proportional to the task dif-
ficulty. But the task diffficulty is not known a
priori. So we start with the assumption that the
task is simple, and we parallelize our algorithm
in a way that it can be solved as fast as possible
or it can be concluded as fast as possible that

it is not simple. This is done by combining the
ideas presented above: the task is intersected
and assigned to groups of nodes that are used
to parallelize the slide steps. If the task is not
simple, we continue planning under the assump-
tion that the task is of average difficulty, using
scheduled global planning with parallelized lo-
cal planning, each local planner is assigned a
subset of the available nodes. If this does not
solve the task, more subgoals have to be used
and we run scheduled planning with complete
local planning within each node. If the task
is extremely difficult, we run complete global
planning in each node. This scheme adapts it-
self to the task difficulty, thus gaining the best
speedup from parallelization for each class of
tasks.

4 ONGOING WORK

The implementation of our system is com-
pleted, we are in the evaluation phase. Several
parameters have to be adjusted for best perfor-
mance, and they are as well dependent on the
number of nodes available: the number of ded-
icated nodes to test avoiding steps, the mini-
mum length of straight line subtasks, the num-
ber of subgoals etc. We are going to implement
simple heuristics that showed good results in
sample scenarios.

The scenarios we use are created from real data
out of industrial production (see fig. 1 C) and
robot research projects. One of this scenarios is
a mobile service robot with a 7-DOF manipula-
tor, where planning is done in the complete ten
dimensional search space to enable manipula-
tion while the platform is in motion. To eval-
uate the speedup, we run two classes of tests.
One series is executed for a few realistic, manu-
ally created tasks. The other series uses a large
number of randomly created tasks, where two
positions have to be connected that are both
close to collisions for the robot’s tool (random
pick-and-place—tasks).

The next steps are the parallelization of the op-
timizer and the development of geometric algo-
rithms and data structures to handle several
shields, thus reducing the number of collision
tests for complex geometry data as well.

5 CONCLUSION

We presented an efficient system for motion
planning in all kinds of environments, for all
kinds of robots with any number of degrees of
freedom. To increase its efficiency for realisti-
cally complex scenarios, we use a scalable and
adaptable parallel algorithm. Currently, our im-
plementation is completed and a large number
of tests is executed to evaluate the speedup
gained through parallelization. The preliminary
results are very promising and show the effi-
ciency of our approach, aiming at motion plan-
ning in real time for most of all tasks, i.e. a
planning time fairly below the time the execu-
tion of the motion demands.

BIBLIOGRAPHY

[1] Boris Baginski. The Z®-method for fast path
planning in dynamic environments. In Proceedings
of IASTED Conference Aplications of Control and
Robotics, pages 47-52, January 1996.

[2] J. Barraquand and J.-C Latombe. A monte-carlo al-
gorithm for path planning with many degrees of free-
dom. In Proceedings of IEEE Conference on Robotics
and Automation, pages 1712-1717, Cincinnati, Ohio,
May 1990.

[3] Stefan Berchtold and Bernhard Glavina. A scalable
optimizer for automatically generated manipulator
motions. In Proccedings of IEEE/RSJ/GI Inter-
national Conference on Intelligent Robots and Sys-
tems IROS’94, pages 17961802, Munich, September
1994.

[4] Martin Eldracher. Neural subgoal generation with
subgoal graph: An approach. In Proceedings of
World Conference on Neural Networks WCNN ’94,
pages 11-142 — I1-146, 1994.

[5] Bernhard Glavina. Planung kollisionsfreier Bewe-
gungen fur Manipulatoren durch Kombination von
zielgerichteter Suche und zufallsgesteuerter Zwis-
chenzielerzeugung. PhD thesis, Technische Univer-
sitdt Miinchen, February 1991.

[6] Lydia Kavraki, Petr Svestka, Jean-Claude Latombe,
and Mark Overmars. Probabilistic roadmaps for
path planning in high-dimensional configuration
spaces. Technical Report UU-CS-1994-32, Utrecht
University, August 1994.

[7] Jean-Claude Latombe. Robot Motion Planning. Klu-
ver Academic Publishers, 1991.

[8] E. Ralli and G. Hirzinger. A global and resolu-
tion complete path planner for up to 6DOF robot
manipulators. In Proceedings of IEEE Conference
on Robotics and Automation, pages 3295-3302, Min-
neapolis, Minnesota, April 1996.

[9] Vaidy S. Sunderam. PVM: A framework for parallel
distributed computing. Concurrency: Practice and
Ezpirience, 2(4), December 1990.

