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Reachability Analysis of Nonlinear
Differential-Algebraic Systems

Matthias Althoff and and Bruce Kroglkellow, IEEE

Abstract—This paper presents a numerical procedure for the state vector,u € R™ is the input vector, and is the

reachability analysis of systems with nonlinear, semi-eXfit, time, which is explicit when the system is time-varying. If
index-1 differential-algebraic equations. The procedurecomputes 8f(§:, Z, u,t)/(?i: is non-singular, one can rewrite the implicit

reachable sets for uncertain initial states and inputs in aroverap- . . . - .
proximative way, i.e. it is guaranteed that all possible trgectories form to an explicit ordinary differential equation (ODE) of

of the system are enclosed. Thus, the result can be used forthe form i = f(#u,t) in most cases [10, Chapter 1.3].
formal verification of system properties that can be specifié in Otherwise, the system model is a set of differential-algibr
the state space as unsafe or goal regions. Due to the repretsion equations of the form = f(z, =, y, u, t), wherex is separated

of reachable sets by zonotopes and the use of highly scalableni 4 vectors € R of so-calleddifferential variablesfor

operations on them, the presented approach scales favorabl - . n.
with the number of state variables. This makes it possible to which a derlvgtwe 1S present, f'md a vec;org R, of so-
solve problems of industry-relevant size, as demonstratedy called algebraic variablesfor which no derivative is present.

a transient stability analysis of the IEEE 14-bus benchmark This formalism is also the basic representation for acausal

problem for power systems. modeling [21].

Index Terms—Reachability analysis, formal safety verification, ~ In this paper we consider time-invariant, semi-explicit,
nonlinear differential-algebraic equations (DAEs), zontopes, index-1 DAEs, which is the most common class of DAEs
power systems. for practical problems. Additionally, in most cases, ona ca

apply index reduction techniques in order to obtain index-
|. INTRODUCTION 1 DAEs [22], [24]. Some software packages for engineering

For many model-based control problems, it is not sufficieproblems are capable of solving only index-1 DAESs, such as
to check properties of a dynamic system by simulatioribe odel5s-solver in MATLAB [47] or DASSL in Dymola
of single trajectories, e.g., when it is required to verify i[41]. The approach presented in this paper can also be dpplie
specifications are not violated for all possible initialtega to nonlinear ordinary differential equations as a specieec
disturbances, and parameters. Computing the set of all s6-DAEs.
lutions is often referred to as reachability analysis, Wwhic As mentioned above, there is only a small amount of
evolved from extensions of algorithms for the analysis diterature on reachability analysis for DAEs, especially o
graphs [43] to discrete systems [36], timed automata [fgchniques that scale well with the number of differentrad a
and eventually to systems with continuous and hybrid (mixedgebraic variables. All of the current literature on regtuility
discrete-continuous) dynamics [8]. The paper presents-a @mmalysis for DAEs focuses on index-1 systems. Most of
merical procedure for the reachability analysis of systaitis the work on reachability analysis of DAEs has been done
differential-algebraic equations (DAES), a class of syst¢hat using level-set methods [18], [38]. These methods refoateul
has received only limited attention in the reachabilitylgsia the reachability problem to solving Hamilton-Jacobi palrti
literature [18], [19], [38]. differential equations, which is done by discretizing thates

DAEs occur in many practical applications, typically whespace. As a consequence, the computational complexity is
there are constraints on the state variables [10], [14]JteSta&xponential in the number of state variables, which typjcal
variable constraints occur, for example, in robotics, wlaenlimits the application to systems with no more than four
robot has to move its end-effector along a surface, or @ontinuous variables. Besides level-set methods, Dang. et a
electrical networks, when currents in a node are consthgint investigated DAEs for electrical circuits using polyhddsat
Kirchhoff’s law. DAE systems also arise from the applicatiorepresentations [19]. This method scales more favoraltly wi
of model-order reduction and singular perturbation teghes the number of state variables compared to level-set methods
of ODEs [14, Chapter 1.3.3], and discretization of partidut requires projections of the reachable set onto the @inst

differential equations (PDEs) [14, Chapter 1.3.4]. manifold determined by the algebraic equations. This groje
Models for dynamic systems are typically derived in th&on is computationally expensive and it is not guarantéed t
implicit form 0 = F(Z,%,u,t), wherez € R” is the the computed approximation of the reachable set projection

. o ____onto the manifold is an overapproximation.
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for guaranteed integration of ODEs and hybrid systems witlsed for representing the reachable sets. For computicg+ea
ODEs as continuous dynamics (see e.g. [40], [44]), while tlable sets of DAEs in an overapproximative way, the original
literature for DAEs is dominated by a rigorous Taylor seriedynamics are abstracted to linear differential inclusiossg
approach [29], [30]. the conservative linearization approach in Sec. IV so thekw
The reachability computation proposed in this work dodsiown techniques from Sec. Il can be applied. The abstracti
not require a projection operation onto the constraint feéohi requires the computation of the linearization error, whigh
as often performed in numerical solvers of DAEs. This iaddressed in Sec. V. A summary of the newly developed
advantageous since projection of a partial solution for alkmalgorithm is presented in Sec. VI, which is applied to the
time increment onto the manifold (algebraic variables ateansient stability analysis of the IEEE 14-bus system in. Se
assumed to be constant for the time increment), results\itl, followed by the conclusion in Sec. VIII.
approximate solutions whose distance to the exact solution
is hard to rigorously quantify. Additionally, projection$ sets Il. PROBLEM FORMULATION
are typically only feasible when the manifold is a hyperglan
We compute the reachable set of the differential variabl
first, but based on this result, obtain the reachable seteof
algebraic variables without using projection. The reatdabt
of the differential variables is computed for short congizeu

time intervals by abstracting the original nonlinear dyiwsto vectors of differential variables, algebraic variableg, and

a linear system with set-valued right-hand sidedifferential . : o .
) i - T . nputsu, the semi-explicit DAE can generally be written as
inclusion[11], [48]). For reachability analysis it is equwalentI putsu -explc g y be wr

We consider time-invariant, semi-explicit, index-1 DAEs
thout parametric uncertainties. We do not consider patam
ic uncertainties in order to focus on the novelties of thegra
the extension to parametric uncertainties can be done using
the methods presented in [6]. Using the previously intreduc

to consider a system of differential equations for whichuitsp &= f(x(t),y(t), u(t))
and/or parameters are uncertain within sets or the cornespo 0 = g(x(t),y(t), u(t)), (1)
ing system of differential inclusions, where most publizas 27 (0), 57 (0)]7 € R(0), u(t) €U

do not include the terndifferential inclusionin their title
(except e.g. [13]). Our method scales withn®), wheren where R(0) overapproximates the set of consistent initial
is number of differential and algebraic variables, whicim castates and/{ is the set of possible inputs.

be reduced tad(n?) for mild nonlinearities. The worst-case The initial state is consistent wheytz(0), y(0), u(0)) = 0,
complexity holds under the assumption that the reachalble sdiile for DAEs with an index greater thah further hidden
does not have to be split, which might be required when tladgebraic constraints have to be considered [10, Chapigr 9.
set of initial conditions, or the nonlinearity measure ig&a In  For an implicit DAE, the index-1 property holds if and
that case, the complexity i9(27n°), wheren is the number only if V¢ : det(%@f”’“(m) # 0, i.e. the Jacobian of

of variables occurring in nonlinear terms. The low compiexi the algebraic equations is non-singular [14, p. 34]. Lopsel
makes it possible to verify properties of DAE systems withpeaking, the index specifies the distance to an ODE (which
sizes relevant in practice. As an example, we consider thas index0) by the number of required time differentiations
problem of showing that after an intermittent power drop-owf the general formd = F'(z,7,u,t) along a solutionz(t),

of a power plant, the initial operating condition of the powen order to determing as a continuous function af, ¢ [10,

grid is restored for all possible initial states, which idle Chapter 9.1].

transient stability analysig the power system literature [34]. We assume that (1) has a unique solution (see [14, Def.
The considered problem is rather large withdifferential and 2.2.1]) denoted byy(¢, 2(0), y(0),«(-)) for all consistent ini-

28 algebraic variables, summing up to a totak@fcontinuous tial statesz(0) € R™, y(0) € R™=, whereu(-) refers to a
state variables. piecewise continuous input trajectory, rather than an tirgu

Obviously, the proposed approach can also be appliedaospecific point in time. The objective is to find the set of
nonlinear ODEs. Most other approaches for nonlinear systeégachable states of (1) over some time horizoa [0,¢/],
reachability also simplify the dynamics, either within i@gs which is defined as
of a fixed state space partition [9], [42], or by simplificatio . T T 1T
in the vicinity of the reachable set [20], [28], which is theR (0, £4]) ::{v(t,x(O),y(O),u(-))‘[w (0), 57 (O] € R(0),
approach used in the previous yvprk [6]. The latter approach u(t) €U, t e [O7tf]}.
generally outperforms fixed partitions, which suffer frof) (
the exponential growth of regions with respect to the numb&he superscript on R°([0,¢,]) denotes the exact reachable
of state variables, and (2) the required intersection djmer® set, which cannot be computed for nonlinear DAE systems
of hybrid system reachability analysis. Approaches whid85]. For this reason, we aim to compute overapproximations
do not use abstraction are mostly based on optimizati®([0,¢;]) 2 R°([0,t;]) which are as accurate as possible,
techniques, which are computationally more expensive,[1¥hile at the same time ensuring that the computations are
[37], [50]. efficient and scale well with the system dimensioa: ng+n,

The paper is organized as follows. In Sec. Il, we formaliz@.;: number of differential variables,: number of algebraic
the reachability problem for systems with DAEs. In Sec. llivariables.). From now on, we often only sagachable set
we recapitulate the computation of reachable sets for lineghen referring to anoverapproximative reachable sedb
differential inclusions and operations on zonotopes, Whie simplify the wording. The projection of the reachable setbon
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d
the differential variables is denoted WR¢([0,¢]) and by RAm)

R([0,tf]) when projected onto the algebraic variables. &R;{(t,ﬂﬂ

Ill. PRELIMINARIES

convex hull of
RA(ty), R (tes1
The approach presented in this work is based on known < Re(ty,)
techniques for computing reachable sets of linear diffiémen
inclusions, which are recapitulated in this section. Wep als
recapitulate well-known operations on zonotopes, whiah ar
chosen as the set representation due to their good perfoemdfig. 1. Steps for the computation of an overapproximatiothefreachable
for required operations in reachability analysis of lingdfer- ~ Set for a linear system.
ential inclusions. As presented later, zonotopes are algmd

choice for newly proposed overapproximations of nonlinear )
operations. Usingr = ti41 — t, the well-known solution ofR¢ (¢41)

is

enlargement
g O g

~ LA
. . d _ JArpd A(r—t)
A. Reachable Set Computation of Linear Systems Ri(tret1) = 7R (L) +/O € dt ve -
Reachable set computations are typically performed itera-

tively by computing the reachable set of short time intesval
t € 1, = [tg,tx+1]. In this work, we restrict ourselves to
constant-size time intervals witl, := kr to focus on the
main innovations, wherg € N is the time step and € Rt is foAr _ S (Ar)i/(il):
referred to as the time increment or step size. An extension =0 a

variable step sizes is described in [23]. The reachableoset f

=:wp(r)

lf Ais invertible,z, (r) can be computed ad—!(e” — I)uc,
where/ is the identity matrix. However, sincé is not always
invertible, we computer,(r) by integrating the Taylor series

- . > g ) N Aipitl o Jipitl
specified time horizon; € R* is stored as a list of reachable z,(7) :(Z : P+ — )uc
setsR () until 541 > t7. In order to compute reachable sets i—0 (i +1)! P— (i+1)!
of time intervals, the reachable sets of points in tifé&) T
are computed as well in this work. From now on, we focus 0o T
on computing the iterative solution for the next point in ¢im ( Al & (r)) w
and the next time interval. — (i+1)! P “

The iterative computation of reachable sets for linear sys- e

tems requires set-based additidfifikowski additiop and set-

based multiplication: The remaindei®, (r) can be overapproximated by an interval

XoY ={r+ylzeX,ye ) matrix E,(r) € &,(r) = [-W(r)r,W(r)r], i.e., by a

Py o pr matrix with lower and upper bounds on each element. Using
Y ={zyle € X,y €V} symmetric bounds orE,(r), these bounds can be obtained

Note that the symbol for set-based multiplication is oftefiom

omitted for simplicity of notation, and that one or both

o0

Ai > Ald,.0+1
operands can be singletons. The following presents a brie|pr r)| = Z .Lriﬂhl < Z |A| "
description of the main steps for obtaining reachable sats f i=mt1 (i +1)! i1 (i+1)!
a single time interval. XAl ~ N Al 2
Given is the linear differential inclusioit € Az (t) & U, S( > | !'T )r = (e“”T = | !'T )r. @
where € R™, A € R™*™ Y C R"™ is a set of =il i—0
uncertain inputs. We use a tilde for the variables of thedline — W (r)

differential inclusion to distinguish the variables frohetones

of the original nonlinear DAEs. For further computationg wNext, we discuss the enlargement of the convex hull denoted
introduce the center, and the deviation from the centerby R¢ to contain all affine solutions far, (the construction of
Un := U ® (—u.) of U. According to [2], the reachable setthe convex hull is presented below in Sec. I1I-B). Accordiag

for a time intervalr, is computed as shown in Fig. 1: [2, Chap. 3.2], the solution is obtained usiAg(r) := W (r)r

1) Starting fromR%(¢;,), compute the set of all solutions@nd W (r) from (2):
Ré(t,41) for the affine dynamics = AZ(t) + u. at -
i) ) R = (FoRYH)) & (Fou)
2) Obtain the convex hull ofR%(t;) and R (tx11) to o= oy, 1A
approximate the reachable set for the time interyal = @ [(ZH - ZH) r ’0} )@ [=W(r), W(r)]
3) ComputeR?() by enlarging the convex hull to first =2

. . S n+1 Ai—1
bound all affine solutions withirr, and secondly ac- = _ iy 1A i i
count for the set of uncertain inputé . 7= (69 [(l ! ) " ’O} 7! & [=W(r), W)
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n

RZ(Z;{A,’I’) = @

=0

The reachable set due to the uncertain irﬂigt is obtained
Ab pitl 5 5 5
—Un | & ([=W(r), W(r)]®[Ual),

as derived in [5]:
<(i +1)!
3

where the absolute value of a set of matricesis defined
elementwise agM|;; := sup{|m;||m € M}, which equiva-
lently applies to the vector séix. Note that wheri/a is not

convex, one has to compute with the convex hull of the input hj

set in order to apply the above formula, see [5].

For the multiplication with an interval matriy\, we split
M into a real-valued matrix/ € R"*™ and an interval
matrix with radiusS € R™*", such thatM = M & [-S, S].
After introducing S; as the ;" row of S, the result is
overapproximated as shown in [2, Theorem 3.3] by

M2, C(M2, &[S, 5]2))

C(Mer, Mgt ..., Mg®) hD,
_ {Sj(|c| + 20 1gl®), fori =

)

()
0, fori#j

The reachable sets for the next point in time and timé&e will also need the enclosure of a zonotope by a multidi-
interval are obtained by combining all previous resultse(sénensional box [2, Prop. 2.2] and its absolute value:

[5]):
R(tis1) =" RAt) ® T(r)ue ® REUa, ),
R (71,) :=CH(R(tx), e R () ® T(r)u,)
D Rf D Rg(l:lA, T),

(4)

p1
box(Z1) :=[c1 — Ag, c1 + Agl, Ag:= Z |g(z)|7 @)
i=1

|Z1] :=|c1| + Ag.
The representation of reachable sets with zonotopes alows

whereCH() returns the convex hull. The representation of th%]chCIent computation as presented later.

reachable set by zonotopes is addressed in the next section. IV. CONSERVATIVE LINEARIZATION

To apply the methods presented in the previous section to
B. Representation of Reachable Sets by Zonotopes compute reachable sets for DAEs, an abstraction of thenaiigi

As shown above, the set operations required for reacmmmonlinear DAEs to linear differential inclusions is perfoed
analysis of linear systems are matrix and interval matrix-mJor €ach consecutive time intervaj. of the reachable set
tiplication, Minkowski addition, absolute value compigat, computation (see Sec. IlI-A). A different abstraction isds
and convex hull. All of these can be efficiently computeEPr each time interval to minimize the overapproximation
using zonotopes, which makes zonotopes very attractive ®IFOr- We first discuss the conservative linearization edoce,
reachability computations of linear systems [25], [27]sBles followed by the linearization error handling.
zonotopes, support functions have been shown to be useful o
for computing reachable sets for linear systems when usifig Lin€arization Procedure
a wrapping-free computation scheme [26]. However, thereFor a concise notation of the conservative linearizatioa, w
exists no wrapping-free algorithm for nonlinear systents, $ntroducez := [z7,y?, uT]T, the linearization point* :=
we use zonotopes since they can be used for efficient nonlinga”, »**,w**]", and R* := R(7) x U. The linearization
reachability analysis, too. point for the differential variables is chosen for eachatesm
close to the center of the next reachable Bét), which is
a good heuristic for minimizing the linearization error.eTh
Euler integration method is used for the time incremest
to approximate this point by* = ¢? + 0.5r - f(c?,c?, c%),
wherec?, ¢, c* are the volumetric centers of the s®&(t;,),
R(tx), andU. We choose* = ¢* and the linearization point
of the algebraic part is obtained by solvifig= g(z*, y*, u*)
using a Newton-Raphson algorithm.

The linearization of (1) is performed using a first-order

Definition 1 (Zonotope) Given a centerc € R™ and so-
called generatorg)) € R”, a zonotope is defined as

Z::{:CERH

p
r=c+ Zﬁig(i),ﬁi €[-1, 1]}
=1

We write in shortZ = (¢, g™, ..., ¢®) and define the order
of a zonotope ap := £, wherep is the number of generators.
The multiplication with a matrixM € R°*" and the

I\/éinl;owski addition (0]; two z(on)otope% = (¢, g0, .., Taylor expansion with Lag;a(ng);ian remainder:
gPVyand 2z, = (d, KV, ..., h(P2)), are a direct consequence . _ , . i(z ok
of the zonotope definition (see [33]): B = filz(t) € filzT) + 0z z:z*(Z(t) Z)
1 02 f;
ZI@ZZZ(C+dag(1)7ag(p1)7h(1)aah(pZ)) (5) @{g(z(t)_Z*)TéngZ) —f(Z(t)_Z*) 5, Z(t)eRz},
M®Z =(Mce,MgWM, ... Mg»)
::Lf
We additionally require the convex hull &, ande?” Z; (see o 0gi(z .
[25)) 0= ;) € =) + 28| (o) 2
z z=2z*
Ar 2.
CH(Z,,e%"2y) C @ {%(z(t) _eyr? gigﬂ _ () =26 2 € R}
S(er+ ey, g AT g g, (6) —~

e — e147“6179(1) _ eArg(l)

geeey

g(Pl) _ eATg(Pl)).
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where£¢ denotes the projection ai? onto thei™ coordinate. Note that the set of possible solutions of the differential
The Lagrangian remainder8?, £¢ enclose all higher-order inclusion (16) is the same as in (13) since uncertain inputs
terms if £ can take any value of the linear combinationzof can be considered by enlarging the set of the right-hand side
andz*, i.e. & € {az+ (1 — a)z*|a € [0,1]}, which follows of the differential inclusion (see e.g. [13]).
from the mean value theorem [12, p. 87]. Since for the time
interval 7, (1) z(¢) can take any values fromR*, (2) R* is
represented by a convex zonotope, andz(3)s chosen as an B. Linearization Error Handling
interior point of this set, it follows that fof € R* the set of
Lagrangian remainders is captured.

For subsequent derivations, it is required to separate
effects from differential variables, algebraic variablesd

inputs. Thereto, we define the following submatrices of thi

The problem for evaluating (16) is that the set of lineariza-
tliiqon errors £ is not known in advance, consequenily is
ur?known, too. As an initial guess we enlarge the most regentl

eomputed linearization errof by a user-defined scalar factor

Jacobians: € RT, so that
aé(ZZ) . = [A, 07 B], 8%—(;:) . = [D, F, E’]7 (9) Z: é@)\(i@ (—é)) (17)

WgexriA € Rndzni;nB € R"d;”ivnc € R, D € whereé is the volumetric center of. If it turns out that the
Rtexa, Foc RMX™ F e R, and n4,na,m aré enclosure assumptionf(2 £) is not correct,C has to be
the number of differential, algebraic, and input variableg,ther enlarged.
respectively. Inserting the abbreviation= [z, y*, «*]? and B _ _
the matricesA-F into the Taylor expansion (8), and intro-Proposition 1 (Conservativeness of the Abstraction)
ducing %) (¢) := azaj:gz))’z: , HoW)(€) = azgiéz)ﬂz:g’ If £ > £, the solution of the original dynamics
2= RE D (—2%), v(t) = (t% — 2+, yields 7(t,x(0)_,y(0)3u(-)) is _enclo_seg byfhe solution of the
. . . ) . abstracting differential inclusiort € Az(t) ® w @ BU @
i ef(z") + Alw(t) — 2%) + Blu(t) — ) + Cy(t) = ¥")  (—u*)) & L.
—— —— ——

=:Az(t) =:Au(t) =:Ay(t)

Proof: From (16) andZ D £ one obtains a strict model
® {lg‘ai - uTHd=(i>(§)u, CeR* ve RZA}, (10) inclusion from the original dynamics to the linear inclusso
2 using the linearization error sets:
0€g(z") + D(x(t) — ) + E(u(t) —u’) + F(y(t) —y")
N—— —— N——

=:Az(t) =:Au(t) =:Ay(t) Vt €T, € Rd(Tk)7y € Ra(Tk)7u eu:

@{l¢ ¢j:I/THa7(j)(§)V7§€RZ,VERZA}. (11) .I':f(l',y,u) Ef}(x—w)@w@Bi(Z/{EB(—u ))@E
200 . CAlz —2") @ we BUS (—u) & L,
Note thatF' is invertible because of the index-1 property, so

that we can reformulate (11) to i.e., all solutions of the original dynamics are includedtbg

1 « abstraction using the linearization ertér The result is inde-
Ay(t) € -F (g(z )+ DAz(t) + EAu(t)) (12) pendent of the amount of overapproximation of the reachable

@{ _ lF*1¢‘¢j _ UTHa,(j)(g)y’ EER, ve RZA}. setst(Tk)z R*(ry) and of the_amo_unt o_f oyerapproximation
_ 2 S _ _ o _ of £ including the set of possible linearization errors. =
Inserting (12) into (10) results in a differential inclusio Clearly, if £ is largely overapproximated, one needs a larger
i ef(z") + AAx(t) + BAu(t) assumption forZ and convergence is not guaranteed. In order
_ CF—l(g(Z*) + DAz(t) + EAu(t)) oL (13) to ensure convergence, one additionally checks if
=(w + flAw(t) + BAu(t)) oL, L C Lonax (18)
where
wi=f(z*) — CF1g(z%), whgreﬁmax is set by the user. If the a_bpve inclusion is not
- . fulfilled, the reachable set has to be split in order to redhee
{1 =A-CF"'D, (14) jinearization error until (18) is fulfilled. Another posdity is
B:=B-CF'E. to reduce the time increment It is part of future work to find
and criteria for deciding when it is better to split the reacleabéts

and when it is better to reduce the time increment

In the previous work [6], the linearization error set is
guessed a€ = L.y, Which is constant over all iterations.
The time-varying adaption oL in this work significantly
We can further simplify (13) by combining the singletan reduces the overapproximation by using the previous linaar

Il i T d )
£ ={50=CFg)o, =" H"D (), as)
b = v H (v, €€ R*, v € RA }.

and the set3(U © (—u*)), £ to a new sel/: tion error and considering the fact that the linearizatiore
i e dit) o, (16) changes over time. _ o _
_ N _ . The computation of the set of linearization errors is ad-
2(t) == Az(t), U=wdBUD(-u")) DL dressed in the next section.
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V. COMPUTATION OF THELINEARIZATION ERROR as shown in (10) and then generalize fo Thereto, we

The set of linearization errorg is computed based on thefirst compute the possible values of the second derivative

reachable seR%(r,) of the linear differential inclusion (16) 1% := {H*)()[¢ € R*}. This is done by first computing
for the conservative uncertain input the enclosing bof := box(R?), which is obtained using (7).

_ . _ . By applying interval arithmetic, each element of the massic
U=woBUS(—u")OL2wsBUSG (—u"))SL=U. [i()(¢) s evaluated fot € T using interval arithmetic [31].

] ] o Interval arithmetic can handle any standard expression,
In order to overapproximate the set of linearization errorgy the result may be rather conservative since dependencie
we first have to reconstruct the reachable set for all vee@bl,atween variables are neglected. To illustrate the efféct o
Rng) from the reachable set for the differential variablegependencies between terms, we first introduce the addition
RHU(Tk)- and multiplication rule for the scalar intervals= [a,a] and

b =1b,0]:

A. Reachable Set of Differential and Algebraic Variables )

We compute the overapproximation of the reachable sets ® 6 =[la+b,a
for the algebraic variables by replacidgr with R4 (73,) := a® b =[min(ab
RA(1) @ (—x*), Au with Un = U © (—u*) in (12), and
translating the set by*: The neglected dependency is best explained by a simple

u . . . 4 —a example, where we compute= a6 @ a. For a = [-2, —1]

R (1) = y* & (=F ) (9(=") @ DRA() S EUASL (7). and 5 — [-1,1], we obtain two different results depending

. ) , ) (19) on the computation method: = a6 & a = [—4,1] and
When combining the algebraic and the differential reachabl _ a(6® 1) = [~4,0], where only the latter result is exact.

sets, it is important to consider the correlation betweeth borps is pecause the exact result is obtained from a so-called
SEIS’_Wh'Ch |s_eV|dent_ due to the use%i_(m) in (19). For a single-use expressidn which each interval occurs only once.
cor11§:|se nota)tlon we introduce t_he matrix of generaters= In the other case; appears twice and can take different values
[g( g } and the alternative short form of a zonotopg o, obtaining the lower and upper limits of each operation,
Zasz=(c0). although each variable is only allowed to have a single value
Proposition 2 (Differential-Algebraic Reachable Set) for each evaluation of the complete expression. This igrede
Suppose R%(r,) = (¢4,G%), U = (¢*,G*), and toas thedependency problenwhich translates to general sets:
L' = (¢,GY. An overapproximation for the complete
reachable set for both the differential and algebraic vatis {a(b+c)lac AbeB,ceC)
is AR(B&C)

o G? 0 0 C{ablac Abe B} ® {acla € A,c€CY.
R(Tk) = (|:Ca:| ) |:_F1DGd _FflEGu —FlGl:|> )

(A®B)®(ARC)

wherec® = y* — F~(g(z*) + D(c? —2*) + E(c" —u*) + '),
and 0 is a matrix of zeros of proper dimension.

(21)

(22)

We present a new technique to compute the set of linearzatio
errors, which suffers much less from the dependency problem
Proof: Using (12), the state of the differential-algebraigs in the previous work [6] by first overapproximating (20)

system is bounded by with
1 _
x(t) z* I £4C Zdolo; = THE Dy, v e RA L. (23)
el 4 _ N _ Ax(t = i ) A
|:y(t):| |:7J _F 1g(z )] |:—F 1D] ( ) 2{ }
0 0 |—=a The new approach uses a newly developed overapproximation
@ [—FlE} Au(t) & {—Fl] L of a quadratic map:
Inserting Az(r;) € (¢ — 2%, GY), Au(my) € (¢* —u*,G*), Lemma 1 (Quadratic Map) Given a zonotope
L' (m,) = (!, G') into the above equation yields the proposed = (c,g™,...,¢®) and a discrete set of matrices
computation ofR(7;) using the addition and multiplication Q¥ € R**" j =1...n, the set
rule of zonotopes in (5). [ ] ‘
Note that Proposition 2 is tighter than the Cartesian prbduc Zg ={¢|p: = 2TQWz, z e Z}

R%(1;) x R*(1) because the latter has as many more gener-
ators, as the number of generatorsRft(7;,). Next, R(7) is is overapproximated by a zonotope
used to overapproximate the set of linearization errors.
quad(Q, Z) := (d, k™M, ... )
B. Bounding the Lagrange Remainder
Using R* = R(1x) x U andRL = R* @& (—=2*), we first
show the computation of the linearization error _ P o
1 ‘ di =c"QWe+0.5 Z g QW gl
cic 5{(;]@ = VTHD (e, ¢ e R*, v € RZA}, (20) pot

with o = (”3?) — 1 generators, where the center is
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and the generators are computed as

d.,da € R™ and interval generators(?) = hff)@[—hx), hg)],

he, ha € R™. Using these interval-valued results, the overap-

. i . T i : . ;
J=lep hgj) :CTQ( )g(J) + 9('7) Q( e proximating zonotope with real-valued center and genemsto
j=1.. .p : R =0.5¢@) 7" Q) g0) is
1 X 1 i
- £t c —{ZTHd"(Z)Z z € RA } C —quad™(H¢, R3)
~T . T . . - A - , 2),s
l _Z S 1 AP g0 Qg 4 g T Q) g0) 2 5
J=th=itl where

The complexity of constructing this zonotope overappraxim
tion with respect to the dimensionis O(n®

Proof: Inserting the definition of a zonotope into the seknd

Zq = {¢lpi = 27QWz, x € Z} yields
P

{sp i = (C+Z B,goNT
j=1

which can be rearranged to

2o = {

P
Q(i)(c'i‘z ng(j))’ B €
j=1

P
= TQWe+ Y 0.5¢D T QW ()
j=1

quad™ (H4, RR) := (de, KV, ..., b 1D 1)y,

i 0, for m # j
-1, 1]}, The complexity with respect to the dimensiois O(n®).

i = {dA,j +3°7  hY;, form =

Proof: The interval valued centef and generators (")
represent the set
(de @ [—da, da)) €D (-1, 1] @ (b0 & [-hQ, h))
——

—a =1 10!

d;
. . T .
QW) 4 g7 Q)

B

p
Z (262 — 1) 0.5 QW4

h;zﬂrj)

p
+Zﬁj(
j=1

p—1 p
NT A T
+ Z Z BB (Q(J) QWg" 4 g Q(l)g(J))’

o

d@( 11®hi>)

=(de,htM o n (7))

(22)

[ea

& [-da,da) @ (-1 1@ =08, nY)) .

=[-yyl, y=da+>7_, hY

It remains to reformulate the multidimensional interjray, y]

J=1k=j+1

1,1]}g (d,h<1>,...,

h(2p+l)

Bi € [— h(a)).

The obtained zonotope is an overapproximation sifiges

to the zonotope(0,l(V), ... 1), where0 is a vector of
zeros of proper dimension arn@ are the generators from
the proposition. ]
The above technique uses interval arithmetic extensively,
which slows down the computation compared to Lemma 1.
The following lemma shows that interval arithmetic can be

[-1,1], (267 = 1) € [-1,1], and 3;8), € [-1,1] for j #
k. The number of new generators is obtained from the faatoided for multiplication with symmetric intervals.
that the new generators'/) are computed by picking two
elements from the set containing all generators and thegen Lemma 3.2] ForN € R™<¢ and an interval matrix
where replacement is allowed and order does not matter. By S, 5] with symmetric bound € Rex!
subtracting the possibility that one can choose two centers ’ '

one obtainsr = (*}?) — 1 generators. NS =[—|N|S,INIS], S'NT =[-8TINT|,STINT]],

It remams to derive the complexity. Quadratic operations

such aSg(ﬂ> Qg™ have complexity®(n?). The number where the absolute value is applied elementwise.

p of generators on can be expressed by its order as,
such that the resulting zonotope |<(égn)+2) 1 generators, proposition 3, which surprisingly returns the exact sanselte
a number which can be bounded 6yn*), such that we have \ithout interval arithmetic.

O(n*) for all generator computations for each dimension and
O(n®) for all dimensions. m Theorem 1 (Interval-Free Computation of £4)

Eemma 2 (Symmetric Interval Matrix Multiplication)

The above Lemma is used in the proof of the followm@fter |9troducnuilg {iféi Hi € R™" such that
Proposition to overapproximaté’ in (23). = H{ @ [-H}, Hy], the equality
. in d z d z
Proposition 3 (Linearization Error) Let each H%(®) be quad™ (H?, RR) = quad(H{, R3) @ [-n, 7],

bounded by an interval matrix, the linearization error ac- = |RA|THL|RA|
cording to (23) is overapproximated by first computingh Ids.

quad(H¢,R%) according to Lemma 1, except that the cen-
ter and generators are computed via interval arithmetic, so

that one obtains an interval centef = d. ® [~da,da], vectors \(¥), where A(")

Inspired by this result, we use an alternative computation o

Proof: For simplicity of notation, we first introduce the
= ¢ represents the center, and
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A2 M@+ the generators ofR%. In Lemma 1, the Corollary 1 (Interval-Free Computation of £) Given the

operationquad(#?, R% ) is broken down into expressions ofzonotopes£? = quad(HY,Ri) = (d,H) and L2 =

the form quad(H¢, R4) = (e, V) computed as presented in Lemma 1,
/\(i)T(Hg © [ HY, HZ]))\(j) _ the overapproximative set of linearization errors is coneol

as
AOTHNGD @ O gl gd]no),

L=—(d—CF le,H—-CF'V)

N)I»—l

fixed value symmetric value

where the equality follows from the fact that the set-valued =L

components have only a single occurrence. Due to the egualit ®=([-¢, @ (-CF)[-0,0),

and the fact that each result has a fixed and symmetric part,

we can conclude that the valués and h§m> in Proposition 3 =La

exactly match\®” H9\) for corresponding choices of ;. ¢:=|RAI"HAIRAI, o:=IRA|"HXIRAI-

Thus, USing the variables from PI‘OpOSitiOﬂ 3, we have that Proof: We Sp“t the Computat|0n of the Lagrangian re-
quad(HY, R3) =(d.. hgl), L hff)) mainder in (15) as follows:

l\JI»—A

1 -
quad([=HY, HL), R3) =(=da, dal, <00, 00),...,  £={50—CFP¢)|o =v"H" D (e,
[-h& h ) b = v H"V (v, € € R*, v € RA )
_ 1 n . .
=011, {30~ CF 9o =" HEOw, gy =" HE D, v € RA )

Using the above result, one can conclude that
quad™ (4, RA) = (de, AV, ... B 1D 1)) =
quad(H{, RA) @ quad([—H3a, HA], RA)

1 i i
& {500 - CF'9)|os =" [-HL®, HL
¢ = v [-HLD HODy, b e Rz}

Theoreml

EC@EA

One can further simplifyuad([—H4, HL],R4) to
rrd ppd) pzy We overapproximaté.. by using the fact thajuad(HZ, R%)

_ auad([=Ha, H3l, RA) = and quad(H¢%, R4 ) return zonotopes with generators multi-
%’é( 1,1] )\(1 _pyd H‘i]/\(j)) Lemma2 plied by the same sequence of multipliess and j5;, see
ArHA - Lemma 1. From this follows that, C (d + CF~'e, H +

==t CF~1V), where it is additionally considered that the multi-
1 l]lglil (|)\(i)|H‘i |/\(j)|) _ plication Wi_th_C’Ff1 is computed such that the sequence of
’ Pt A scalar multlpller_s is preserved. _ _ =
p+1j i1 The overapproximative computation _of the Ilnearlzat|omer_
_1,1) (Z |)\(i)|) 77 (Z |)\(j)|) as well as the other presented techniques are assembleal in th
’ A next section to the overall algorithm of the proposed apgoa
SN——— ————
=IRAl see () =|R3|, see (7) VI. OVERALL ALGORITHM
which concludes the proof. ] The overall algorithm for computing an overapproximation

It follows from Lemma 1 that the linearization error compuef the reachable set for the nonlinear, semi-explicit, xatle
tation using Theorem 1 has complexi®(n®) with respect to DAE in (1) is summarized in Alg. 1. The overapproximation

the dimensiom. of the reachable set is obtained by combining the consgevati
In the previous work [6], the set of linearization errors idinearization procedure, the previously known technigfoes
bounded usin@a := box(R3%) by reachability analysis of linear differential inclusioremd the

improved approach for computing the linearization errdre T

algorithm consists of three major parts:

= [Za|" [HPD|Z4. 0 Computing a linearization and the corresponding set
of linearization errorsC of the current time interval.
The overapproximated reachable 84tr;) based on the
assumption of linearization errofsis obtained as a by-
product from this computation.

Splitting of reachable sets when the set of linearization
errors. is too large.

O Computing the tightly overapproximated reachable set
at the next point in timeR(¢s4+1) using the set of
linearization error<. It is crucial thatR (¢, 1) is tightly
overapproximated since the reachable set of the next
point in time and the next time interval are based on

£ I @ H*D @ Ix C [-L;, L), (24)

The computational complexity of (24) with respect to the
system dimension i€)(n?) since the quadratic evaluation
for the i" coordinate isO(n?) and there arex coordinates.
Depending on the nonlinear dynamics, the linearizatioorerr
computation in (24) might suffer from substantial overagpqpr
mation. For the power system example in Sec. VII, one cannot
even compute the first time interval using the technique from
[6] since the linearization error computation does notitzh

It remains to compute the linearization erin (15) using
the techniques presented above.
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this set. This is in contrast to the reachable set for tidgorithm 1 reach(R(0),ty,r,U, L™, )

time interval, since it only has a small contribution orRequire: Initial setR%(0), input set/, time horizont ¢, time
the wrapping-effect by influencing the size 6f stepr, max. linearization erro™a*, factor \
These steps are also reflected in Alg. 1. The linearizatimr erEnsure: R%([0,¢¢])
computation irJ starts by computing the coefficients B, C, 1. tc =0, k = 0, £ = {0}, R*“™°" =), u* = center(U)
D, E, Fin (9) for the linearization point* of the currenttime  2: while ¢, < ¢y do
interval, which are combined t@, A, B according to (14), a 3:  taylor(R(t;)) — w, A, B (see (9), (14))

process which is abbreviated byylor(R%(t,)) — w, A, B a4 repeat
in line 3 of Alg. 1. The assumption on the linearization eligor . L=¢d AL ® (—¢)) (see (17))
computed in line 5 by slightly enlarging the set of the pregio 6: U=wDBUD(—u*)) ® L (see (16))
linearization errors. In line 7, the reachable &t(r) for a R(1y,) = CH(’Rd(tk),eAT’Rd(tk) D F(T)uc) L0
whole time interval is computed based on_the linear diffeaén oRe @RI (Z/_{@ (—u) T) (see (4))
inclusion in (16) and the uncertain inplt (line 6), which computeR(rE) usiﬁg Prop 20 ’
in turn is based onl (line 5). The reachable set of the compute’. uging Corollary.l
differential variables is complemented to the set of allafales until £LC LV L ¢ [ma
in line 8, which is then used in line 9 to overapproximate it £ Q [max then
. R = . . .
the set of I_|nea_r|zat|on errors. MZ CL R (Tk_) is a valid 12 spLit(R(ty)) — RW (t), R (t1)
overapproximation, see Proposition 1, otherwise, the luap 1 _ 1
. . .. : R( )([tk,tf]) —reach('R( )(tk),(tf —tk),...)
to be repeated for a new assumption on the linearizatiom.errg . 5 . 5
mption o Q4 R ([ty, tf]) = reach(RP (1), (t; — tx), ...)
When the reachable set is split int®™ (t,), R (t,) union . punion | | (1) ! ’
Lo R R =R URW ([t ty]) 48
in line 12, which is indicated bysplit(R(tx)) — @)
RW(t,), RP(t,), one has to recursively call Alg. 1 for the 1> R ([tk, t4])
remaining time horizon. 16: bk =ty
Finally, the reachable set for the next point in time id7:  €IS€. N .
computed in line 19 using the linearization enso that one & ud: w S B(Mﬁ (;“ ) © L (see (16))
obtains the uncertain inpdt C %/ for the linear differential RE(thr1) = eV RA(t) & T(r)uc
inclusion in (16). The reachable set for the time intervaias  19: @Rg(u @ (—uc),r) (see (4)) v 0
re-computed using the refined inplt since its contribution 20: Runion — Runion | Rd(r)
to the wrapping-effect is marginal as previously discussed 21: th1 =t +r, ki=k+1
22: end if
VIl. POWER SYSTEM EXAMPLE 23: end while

We apply our approach to a power system problem. Tha: R4([0,¢;]) = Runion
verification task is to show that after a power drop-out of a
power plant and its subsequent reconnection to the grid, the
system state comes back to its original operating point. We
show this for a set of initial states by computing the reathab

set of the differential variables until it is enclosed by thenodels. Especially in the multi-machine case, one ofterttas
initial set again. This problem is known &mnsient stability neglect transfer conductances and replace some timengaryi
analysisin the power system literature [34]. The power systemjenerator states by constants. There also exists a humber of

is modeled by the IEEE 14-bus benchmark power systefibdel-free analysis techniques, such as pattern recogniti
network to which we add power generators, which providgpert systems, and neural nets, see [39].

the dynamic part, while the algebraic part originates from
the power system network. The model hasdifferential and
28 algebraic variables, giving a total dR continuous state
variables.

Reachability analysis for power systems has been consid-
ered in [16], [32], [49], but only for small problems. In
[32], transient stability analysis is performed using lesets

Note that guaranteed transient stability analysis caneot fx?_r a S|ngle-mach|n_e-|nf|n|te-bu_s system modeled by O.DES
achieved using Monte-Carlo simulation since the set ofahit with only 2 state variables. A slightly larger double-machine-

states is uncertain, so it is possible to miss the simulatio\’i;f'?'te'bqsblsys'(_em W'tr% busde_s disgcn?rid by t(r)]DES V\.”fhb.l
which do not return to the original operating point. Othe? ale varia esf IS C%nbs' err]e kl'n [‘f 1 I efre,d. € re.z;g‘j}a !
methods for analyzing transient stability besides MontddCa analysis IS pertormed by checxing It ells of a |s_,cret|. S
simulation are summarized in [39]. Besides numerical simulSPace can_bg_reached from F“h?r ce_ll_s by numerical simalatio
tion, the other model-based techniques are based on Lyapum)[_m]’ an initial DAE model IS S'mp“f'ed to ODEs and _further
methods for determining regions of attraction, i.e. regior{O I|near_ ODEs, without con5|_der|ng errors made during each
from where all trajectories converge to the operating poiﬁgfnversmn. A 3-bu§ sy§tem Is considered n that w.o-rk, and
of the power system [1], [15], [45]. Lyapunov methods are gffects on wind variability rather than transient stapildre

formal technique, but they suffer from (1) conservativeutess investigated.
meaning that the region of attraction is often largely under We first present the mathematical model of the power
approximated for larger systems, and (2) require simplifie@ystem and then show the results of the reachability arsalysi
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A. Mathematical Model describes the generator dynamics [16]:

We use the IEEE 14-bus benchmark system enhanced by% = @i — w1

generator dynamics, which is depicted in Fig. 2. In order to . _ _&(w} —wi) + LT o LP ,

obtain the correct equations for the relatively complex 14- M; M; ™ Mg

bus system, we auto-generate the equations using symbofic . _ _ 1 (Wi — ws) — LTm S+ 1 P,

computations in MATLAB. First, the power flow equations Tsv,:Rp iws Tsvi " Tsvi
are obtained according to [46] for each bus, where variable (26)

indices refer to the bus number. The absolute value of the QHﬁere M, [MIH
voltage is denoted by;| [p.u] (p.u.: per unit), the angle of the dam
bus voltage by®; [rad], the active power by; [p.u.], and the
reactive power by); [p.u.], where inflow of power is positive. Fori — 1, the dynamics is solely described byandT,, since
The buses are connected via admittancgs= Yj;, wherei o phas,e angle is always "

and j are the indices of the connected buses. The absolute, power drop-out of the™ power plant is modeled by

value and the angle of _the admﬂtanges are denot_epY;gy setting the active and reactive power in (25) and (26) to zero
and¥;; = ZY;;, respectively. The active and reactive powe(P . =0, Qg = 0). In order to write the power system in the
of ((jeacf:j bus rgsu}ltshfrom the generator p:joducﬂgn, Qg.i standard form of time-invariant, semi-explicit, index- ABs

and a demand of that nOdEdvij,Qdﬂ' In order tq COMPUte 1 resented in (1), we rename the dynamic, algebraic, and inpu
the generated power, we additionally have to introduce t

k firiables. The algebraic variabl hanged t
generator voltagé’; [p.u.], the generator phase anglgrad], riables. The algebraic variables are changed to

7?] is the rotational inertia,D; [s/rad] the
ping coefficientTsy; [s] is the time constant of the
governor, and}# [-]is the proportional gain of the governor.

and the admittance from the generator to fiiegenerator bus i=1...Ng: vi=E;
Y,.i, where|Y, ;| [p.u], ¥,; = £Y,; [rad] are the absolute i=1...Np: YN +i = VN +i,
values and phase angles, respectively. i=1...(Ng+Ni): yn,+N+i = O;,
We reorder the numbering of the power network busetie dynamic variables to
where N, is the number of generators aid is the number i=2.  N,: @iy =3
of load buses. In this work, the first bus=€ 1) is connected i=1. Ng g ’: o
g Ng+i—1 iy

to a generator and serves as the slack bus, whose generator i1 N
phase anglé; is the reference for all other generator phase , ¢
anglesd; := 6; — 6, and bus phase anglé$; := ©; — 4. and the inputs to

Further, the power system ha§, so-calledgenerator buses i=1...N,: u;=P.,.
which are connected to generators. Those buses (inclul@g t '

slack bus) produce active and reactive power accordingeto §yhen theit power plant is not on the grid, the variahig

TaN,+i-1 = T,

following equations (see [46]): is removed from (25), (26), and is no longer an unknown
variable. We replace; = E; by y; = V; during the power
Pyi = EV;|Yy.ilcos(W,; +0; — ©;) — V2|V, ;| cos(¥, ), drop-out, since the power plant can no longer control the

-th
i = —EVi|Y, | sin(U,; + 6 — ©;) + V2|Y, | sin(¥,,;). Voltage at the™ bus.
s, Yol sin(Ly, ) Yol sin(¥g.:) The generator parameters of the IEEE 14-bus system are

listed in Tab. | and we refer to [51] for the parameters of the

The remainingN; buses are referred to dsad buses(i = .
power grid.

Ng+1...Ny+ N;), which are power sinks. The power flow

equations as in [46, p.174] of each bus are TABLE |
PARAMETERS OF THE GENERATORS

N0 Vi M, D [V VU, Tsv: Rpi
Pi=Pyi+Pai= Y ViVj[Vi|cos(¥y;; +©; — ©,), L 004 5 - 1 005 120r
j=1
Ng+N,
Qi = Qg+ Qui=— Y ViVj|Yylsin(¥;; +6; - 0,). - .
i=1 B. Reachability Analysis

(25)  we investigate the transient stability by a power drop-dut o
the largest power plant at busThe power system is in normal

So far, only the algebraic equations of the power systeoperation for the first time interval= [0, 0.1] [s], which we
are introduced. The dynamic equations are described by ttadl pre-fault phase. In the time interval = [0.1,0.13] [s],
generator dynamics. For simplicity, we use the same model the power plant at bu$ producing the most power is taken
all generators and synchronous condensers, where thededte off the grid, which we refer to as thiault-on phase. Att =
generators that produce no active power. The variableseof th13 [s], the power plant is reconnected, which startspbst-
i generator are the voltage angldrad], the angular velocity fault phase. The reachable set computation is stopped when
w; [rad/s], and the torqud’,; [p.u.], and the commandedthe reachable set of differential variables is enclosedhay t
powersP, ; [p.u.]. The following set of differential equationsinitial set of states, proving that all differential statariables
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that ranks nonlinear expressions in terms of difficulty for
reachability analysis.

- 3764 ,_12.033 LD"O4033
3 g g
&~ &~
2.032 0.032
376.3
-0.59 -0.58 -0.57 3763 376.4 0.032 0.033
53 w1 Tm,4

Fig. 4. Reachable set of selected projections at time 4.32 [s] when
all solutions have returned to the initial set. The dark gaaga shows the
reachable set and the black box shows the initial set.

VIIl. CONCLUSION

This paper presents an approach for overapproximatively
computing reachable sets of systems with differentiad¢iatgic
equations. The presented method scales favorably with the
system dimension due to the use of zonotopes for the set
representation. Our approach can be applied to any nonlinea
o o semi-explicit, index-1 DAE system and any nonlinear system
wi(0) € wy ©0.1- [._1’ 1], Tn,i(0) € Ty, ; & 0.001 - [_1,’ 1], of ODEs with unique solutions for all consistent initial tets
where the superscr_lpted Z€ro refers to the stgady_ statosolu It has been shown that the computation of the set of lineariza

For the reaqhablhty analysis we use a time increment Qb orrors has drastically improved compared to the previo
r = 0.001 [s] in the fault-on mode; = 0'00_5 [s] for the  ethod [6], which already cannot be stabilized at the first
pre-fault mode and the post-fault mode uniti= 2 [s], and = iq interval without splitting. When the set of linearizat

r = 0.02 [s] for the remaining time in the post-fault modeg s hecomes too large, it is necessary to split the rédeha
We restrict the order _Of zo_notppespo: 400 and Fhe~order set as described in [6]. When many splits are required, it is
of _zonotopes for the I|r_1ear|zat|0n error computationpte: 3 advantageous to use zonotope bundles as a set representatio
using the order reduction metho‘?‘ n _[25]' ) [3]. The method can be integrated in the reachability amslys
The reachable sets of the entire time horizon for selectgflyprig systems by considering changes in the continuous
projections onto differential and algebraic variablessitewn  4ynamics when hitting so calleguard sets4], [23]. Future

in Fig. 3. The simulations of system trajectories from ranto o should focus on further investigating on how to compute
chosen initial states are indicated by black lines. Noté thg,nier linearization error bounds.

the algebraic values jump when the power plant is taken o
the grid and when it is reconnected to the grid. At time

4.32 [s], the initial set is reached aftér0 iterations, which ) ] ) )
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