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Reachability Analysis of Nonlinear
Differential-Algebraic Systems

Matthias Althoff and and Bruce Krogh,Fellow, IEEE

Abstract—This paper presents a numerical procedure for the
reachability analysis of systems with nonlinear, semi-explicit,
index-1 differential-algebraic equations. The procedurecomputes
reachable sets for uncertain initial states and inputs in anoverap-
proximative way, i.e. it is guaranteed that all possible trajectories
of the system are enclosed. Thus, the result can be used for
formal verification of system properties that can be specified in
the state space as unsafe or goal regions. Due to the representation
of reachable sets by zonotopes and the use of highly scalable
operations on them, the presented approach scales favorably
with the number of state variables. This makes it possible to
solve problems of industry-relevant size, as demonstratedby
a transient stability analysis of the IEEE 14-bus benchmark
problem for power systems.

Index Terms—Reachability analysis, formal safety verification,
nonlinear differential-algebraic equations (DAEs), zonotopes,
power systems.

I. I NTRODUCTION

For many model-based control problems, it is not sufficient
to check properties of a dynamic system by simulations
of single trajectories, e.g., when it is required to verify if
specifications are not violated for all possible initial states,
disturbances, and parameters. Computing the set of all so-
lutions is often referred to as reachability analysis, which
evolved from extensions of algorithms for the analysis of
graphs [43] to discrete systems [36], timed automata [7],
and eventually to systems with continuous and hybrid (mixed
discrete-continuous) dynamics [8]. The paper presents a nu-
merical procedure for the reachability analysis of systemswith
differential-algebraic equations (DAEs), a class of systems that
has received only limited attention in the reachability analysis
literature [18], [19], [38].

DAEs occur in many practical applications, typically when
there are constraints on the state variables [10], [14]. State
variable constraints occur, for example, in robotics, whena
robot has to move its end-effector along a surface, or in
electrical networks, when currents in a node are constraintby
Kirchhoff’s law. DAE systems also arise from the application
of model-order reduction and singular perturbation techniques
of ODEs [14, Chapter 1.3.3], and discretization of partial
differential equations (PDEs) [14, Chapter 1.3.4].

Models for dynamic systems are typically derived in the
implicit form 0 = F ( ˙̃x, x̃, u, t), where x̃ ∈ Rn is the
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state vector,u ∈ Rm is the input vector, andt is the
time, which is explicit when the system is time-varying. If
∂f( ˙̃x, x̃, u, t)/∂ ˙̃x is non-singular, one can rewrite the implicit
form to an explicit ordinary differential equation (ODE) of
the form ˙̃x = f̃(x̃, u, t) in most cases [10, Chapter 1.3].
Otherwise, the system model is a set of differential-algebraic
equations of the form0 = f(ẋ, x, y, u, t), wherex is separated
into a vectorx ∈ Rnd of so-calleddifferential variablesfor
which a derivative is present, and a vectory ∈ Rna of so-
called algebraic variablesfor which no derivative is present.
This formalism is also the basic representation for acausal
modeling [21].

In this paper we consider time-invariant, semi-explicit,
index-1 DAEs, which is the most common class of DAEs
for practical problems. Additionally, in most cases, one can
apply index reduction techniques in order to obtain index-
1 DAEs [22], [24]. Some software packages for engineering
problems are capable of solving only index-1 DAEs, such as
the ode15s-solver in MATLAB [47] or DASSL in Dymola
[41]. The approach presented in this paper can also be applied
to nonlinear ordinary differential equations as a special case
of DAEs.

As mentioned above, there is only a small amount of
literature on reachability analysis for DAEs, especially on
techniques that scale well with the number of differential and
algebraic variables. All of the current literature on reachability
analysis for DAEs focuses on index-1 systems. Most of
the work on reachability analysis of DAEs has been done
using level-set methods [18], [38]. These methods reformulate
the reachability problem to solving Hamilton-Jacobi partial
differential equations, which is done by discretizing the state
space. As a consequence, the computational complexity is
exponential in the number of state variables, which typically
limits the application to systems with no more than four
continuous variables. Besides level-set methods, Dang et al.
investigated DAEs for electrical circuits using polyhedral set
representations [19]. This method scales more favorably with
the number of state variables compared to level-set methods,
but requires projections of the reachable set onto the constraint
manifold determined by the algebraic equations. This projec-
tion is computationally expensive and it is not guaranteed that
the computed approximation of the reachable set projection
onto the manifold is an overapproximation.

A problem similar to reachability analysis is addressed in
guaranteed integration, where one guarantees the enclosure of
a solution despite rounding errors, typically computed fora
small region around a single initial state without considering
uncertain time-varying inputs. There are many approaches
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for guaranteed integration of ODEs and hybrid systems with
ODEs as continuous dynamics (see e.g. [40], [44]), while the
literature for DAEs is dominated by a rigorous Taylor series
approach [29], [30].

The reachability computation proposed in this work does
not require a projection operation onto the constraint manifold
as often performed in numerical solvers of DAEs. This is
advantageous since projection of a partial solution for a small
time increment onto the manifold (algebraic variables are
assumed to be constant for the time increment), results in
approximate solutions whose distance to the exact solution
is hard to rigorously quantify. Additionally, projectionsof sets
are typically only feasible when the manifold is a hyperplane.
We compute the reachable set of the differential variables
first, but based on this result, obtain the reachable set of the
algebraic variables without using projection. The reachable set
of the differential variables is computed for short consecutive
time intervals by abstracting the original nonlinear dynamics to
a linear system with set-valued right-hand side (adifferential
inclusion [11], [48]). For reachability analysis it is equivalent
to consider a system of differential equations for which inputs
and/or parameters are uncertain within sets or the correspond-
ing system of differential inclusions, where most publications
do not include the termdifferential inclusion in their title
(except e.g. [13]). Our method scales withO(n5), wheren
is number of differential and algebraic variables, which can
be reduced toO(n3) for mild nonlinearities. The worst-case
complexity holds under the assumption that the reachable set
does not have to be split, which might be required when the
set of initial conditions, or the nonlinearity measure is large. In
that case, the complexity isO(2ñn5), whereñ is the number
of variables occurring in nonlinear terms. The low complexity
makes it possible to verify properties of DAE systems with
sizes relevant in practice. As an example, we consider the
problem of showing that after an intermittent power drop-out
of a power plant, the initial operating condition of the power
grid is restored for all possible initial states, which is called
transient stability analysisin the power system literature [34].
The considered problem is rather large with14 differential and
28 algebraic variables, summing up to a total of42 continuous
state variables.

Obviously, the proposed approach can also be applied to
nonlinear ODEs. Most other approaches for nonlinear system
reachability also simplify the dynamics, either within regions
of a fixed state space partition [9], [42], or by simplification
in the vicinity of the reachable set [20], [28], which is the
approach used in the previous work [6]. The latter approach
generally outperforms fixed partitions, which suffer from (1)
the exponential growth of regions with respect to the number
of state variables, and (2) the required intersection operations
of hybrid system reachability analysis. Approaches which
do not use abstraction are mostly based on optimization
techniques, which are computationally more expensive [17],
[37], [50].

The paper is organized as follows. In Sec. II, we formalize
the reachability problem for systems with DAEs. In Sec. III,
we recapitulate the computation of reachable sets for linear
differential inclusions and operations on zonotopes, which are

used for representing the reachable sets. For computing reach-
able sets of DAEs in an overapproximative way, the original
dynamics are abstracted to linear differential inclusionsusing
the conservative linearization approach in Sec. IV so that well-
known techniques from Sec. III can be applied. The abstraction
requires the computation of the linearization error, whichis
addressed in Sec. V. A summary of the newly developed
algorithm is presented in Sec. VI, which is applied to the
transient stability analysis of the IEEE 14-bus system in Sec.
VII, followed by the conclusion in Sec. VIII.

II. PROBLEM FORMULATION

We consider time-invariant, semi-explicit, index-1 DAEs
without parametric uncertainties. We do not consider paramet-
ric uncertainties in order to focus on the novelties of the paper;
the extension to parametric uncertainties can be done using
the methods presented in [6]. Using the previously introduced
vectors of differential variablesx, algebraic variablesy, and
inputsu, the semi-explicit DAE can generally be written as

ẋ = f(x(t), y(t), u(t))

0 = g(x(t), y(t), u(t)),

[xT (0), yT (0)]T ∈ R(0), u(t) ∈ U ,

(1)

where R(0) overapproximates the set of consistent initial
states andU is the set of possible inputs.

The initial state is consistent wheng(x(0), y(0), u(0)) = 0,
while for DAEs with an index greater than1, further hidden
algebraic constraints have to be considered [10, Chapter 9.1].
For an implicit DAE, the index-1 property holds if and
only if ∀t : det(∂g(x(t),y(t),u(t))

∂y
) 6= 0, i.e. the Jacobian of

the algebraic equations is non-singular [14, p. 34]. Loosely
speaking, the index specifies the distance to an ODE (which
has index0) by the number of required time differentiations
of the general form0 = F ( ˙̃x, x̃, u, t) along a solutioñx(t),
in order to determinė̃x as a continuous function of̃x, t [10,
Chapter 9.1].

We assume that (1) has a unique solution (see [14, Def.
2.2.1]) denoted byγ(t, x(0), y(0), u(·)) for all consistent ini-
tial statesx(0) ∈ Rnd , y(0) ∈ Rna , whereu(·) refers to a
piecewise continuous input trajectory, rather than an input at
a specific point in time. The objective is to find the set of
reachable states of (1) over some time horizont ∈ [0, tf ],
which is defined as

Re([0, tf ]) :=
{

γ(t, x(0), y(0), u(·))
∣
∣
∣[xT (0), yT (0)]T ∈ R(0),

u(t) ∈ U , t ∈ [0, tf ]
}

.

The superscripte on Re([0, tf ]) denotes the exact reachable
set, which cannot be computed for nonlinear DAE systems
[35]. For this reason, we aim to compute overapproximations
R([0, tf ]) ⊇ Re([0, tf ]) which are as accurate as possible,
while at the same time ensuring that the computations are
efficient and scale well with the system dimensionn = nd+na

(nd: number of differential variables,na: number of algebraic
variables.). From now on, we often only sayreachable set
when referring to anoverapproximative reachable setto
simplify the wording. The projection of the reachable set onto
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the differential variables is denoted byRd([0, tf ]) and by
Ra([0, tf ]) when projected onto the algebraic variables.

III. PRELIMINARIES

The approach presented in this work is based on known
techniques for computing reachable sets of linear differential
inclusions, which are recapitulated in this section. We also
recapitulate well-known operations on zonotopes, which are
chosen as the set representation due to their good performance
for required operations in reachability analysis of lineardiffer-
ential inclusions. As presented later, zonotopes are also agood
choice for newly proposed overapproximations of nonlinear
operations.

A. Reachable Set Computation of Linear Systems

Reachable set computations are typically performed itera-
tively by computing the reachable set of short time intervals
t ∈ τk := [tk, tk+1]. In this work, we restrict ourselves to
constant-size time intervals withtk := k r to focus on the
main innovations, wherek ∈ N is the time step andr ∈ R+ is
referred to as the time increment or step size. An extension to
variable step sizes is described in [23]. The reachable set for a
specified time horizontf ∈ R+ is stored as a list of reachable
setsR(τk) until tk+1 ≥ tf . In order to compute reachable sets
of time intervals, the reachable sets of points in timeR(tk)
are computed as well in this work. From now on, we focus
on computing the iterative solution for the next point in time
and the next time interval.

The iterative computation of reachable sets for linear sys-
tems requires set-based addition (Minkowski addition) and set-
based multiplication:

X ⊕ Y :={x+ y|x ∈ X , y ∈ Y},

X ⊗ Y :={x y|x ∈ X , y ∈ Y}.

Note that the symbol for set-based multiplication is often
omitted for simplicity of notation, and that one or both
operands can be singletons. The following presents a brief
description of the main steps for obtaining reachable sets for
a single time interval.

Given is the linear differential inclusioṅ̃x ∈ Ãx̃(t) ⊕ Ũ ,
where x̃ ∈ Rnd , Ã ∈ Rnd×nd , Ũ ⊂ Rnd is a set of
uncertain inputs. We use a tilde for the variables of the linear
differential inclusion to distinguish the variables from the ones
of the original nonlinear DAEs. For further computations, we
introduce the centeruc and the deviation from the center
Ũ∆ := Ũ ⊕ (−uc) of Ũ . According to [2], the reachable set
for a time intervalτk is computed as shown in Fig. 1:

1) Starting fromRd(tk), compute the set of all solutions
Rd

h(tk+1) for the affine dynamicṡ̃x = Ãx̃(t) + uc at
time tk+1.

2) Obtain the convex hull ofRd(tk) and Rd
h(tk+1) to

approximate the reachable set for the time intervalτk.
3) ComputeRd(τk) by enlarging the convex hull to first

bound all affine solutions withinτk and secondly ac-
count for the set of uncertain inputs̃U∆.

Rd(tk)

Rd
h
(tk+1)

convex hull of
Rd(tk), Rd

h
(tk+1)

Rd(τk)

➀ ➁ ➂

enlargement

Fig. 1. Steps for the computation of an overapproximation ofthe reachable
set for a linear system.

Using r = tk+1 − tk, the well-known solution ofRd
h(tk+1)

is

Rd
h(tk+1) = eÃrRd(tk) +

∫ r

0

eÃ(r−t) dt uc

︸ ︷︷ ︸

=:xp(r)

.

If Ã is invertible,xp(r) can be computed as̃A−1(eÃr − I)uc,
whereI is the identity matrix. However, sincẽA is not always
invertible, we computexp(r) by integrating the Taylor series
of eÃr =

∑∞
i=0(Ãr)i/(i!):

xp(r) =
( η
∑

i=0

Ãiri+1

(i+ 1)!
+

∞∑

i=η+1

Ãiri+1

(i+ 1)!
︸ ︷︷ ︸

=:Ep(r)

)

uc

∈
( η
∑

i=0

Ãiri+1

(i+ 1)!
⊕ Ep(r)

)

︸ ︷︷ ︸

=:Γ(r)

uc,

The remainderEp(r) can be overapproximated by an interval
matrix Ep(r) ∈ Ep(r) := [−W (r) r,W (r) r], i.e., by a
matrix with lower and upper bounds on each element. Using
symmetric bounds onEp(r), these bounds can be obtained
from

|Ep(r)| =

∣
∣
∣
∣

∞∑

i=η+1

Ãi

(i + 1)!
ri+1

∣
∣
∣
∣
≤

∞∑

i=η+1

|Ã|iri+1

(i+ 1)!

≤

( ∞∑

i=η+1

|Ã|iri

i!

)

r =

(

e|Ã|r −

η
∑

i=0

|Ã|iri

i!

)

︸ ︷︷ ︸

=:W (r)

r.
(2)

Next, we discuss the enlargement of the convex hull denoted
byRd

ǫ to contain all affine solutions forτk (the construction of
the convex hull is presented below in Sec. III-B). Accordingto
[2, Chap. 3.2], the solution is obtained using̃W (r) := W (r)r
andW (r) from (2):

Rd
ǫ :=

(
F ⊗Rd(tk)

)
⊕
(
F̃ ⊗ uc

)

F :=

(
η
⊕

i=2

[(

i
−i
i−1 − i

−1
i−1

)

ri, 0
] Ãi

i!

)

⊕ [−W (r),W (r)]

F̃ :=

(
η+1
⊕

i=2

[(

i
−i
i−1 − i

−1
i−1

)

ri, 0
] Ãi−1

i!

)

⊕ [−W̃ (r), W̃ (r)]
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The reachable set due to the uncertain inputŨ∆ is obtained
as derived in [5]:

Rd
p(Ũ∆, r) :=

η
⊕

i=0

(

Ãi ri+1

(i+ 1)!
Ũ∆

)

⊕
(
[−W̃ (r), W̃ (r)]⊗|Ũ∆|

)
,

(3)
where the absolute value of a set of matricesM is defined
elementwise as|M|ij := sup

{
|mij |

∣
∣m ∈ M

}
, which equiva-

lently applies to the vector set̃U∆. Note that whenŨ∆ is not
convex, one has to compute with the convex hull of the input
set in order to apply the above formula, see [5].

The reachable sets for the next point in time and time
interval are obtained by combining all previous results (see
[5]):

Rd(tk+1) :=eArRd(tk)⊕ Γ(r)uc ⊕Rd
p(Ũ∆, r),

Rd(τk) :=CH
(
Rd(tk), e

ArRd(tk)⊕ Γ(r)uc

)

⊕Rd
ǫ ⊕Rd

p(Ũ∆, r),

(4)

whereCH() returns the convex hull. The representation of the
reachable set by zonotopes is addressed in the next section.

B. Representation of Reachable Sets by Zonotopes

As shown above, the set operations required for reachability
analysis of linear systems are matrix and interval matrix mul-
tiplication, Minkowski addition, absolute value computation,
and convex hull. All of these can be efficiently computed
using zonotopes, which makes zonotopes very attractive for
reachability computations of linear systems [25], [27]. Besides
zonotopes, support functions have been shown to be useful
for computing reachable sets for linear systems when using
a wrapping-free computation scheme [26]. However, there
exists no wrapping-free algorithm for nonlinear systems, so
we use zonotopes since they can be used for efficient nonlinear
reachability analysis, too.

Definition 1 (Zonotope) Given a centerc ∈ Rn and so-
called generatorsg(i) ∈ Rn, a zonotope is defined as

Z :=
{

x ∈ Rn
∣
∣
∣x = c+

p
∑

i=1

βig
(i), βi ∈ [−1, 1]

}

We write in shortZ = (c, g(1), . . . , g(p)) and define the order
of a zonotope asρ := p

n
, wherep is the number of generators.

The multiplication with a matrixM ∈ Ro×n and the
Minkowski addition of two zonotopesZ1 = (c, g(1), . . .,
g(p1)) andZ2 = (d, h(1), . . ., h(p2)), are a direct consequence
of the zonotope definition (see [33]):

Z1 ⊕Z2 = (c+ d, g(1), . . . , g(p1), h(1), . . . , h(p2))

M ⊗Z1 = (M c,M g(1), . . . ,M g(p1))
(5)

We additionally require the convex hull ofZ1 andeArZ1 (see
[25]):

CH(Z1, e
ArZ1) ⊆

1

2
(c1 + eArc1, g

(1) + eArg(1), . . . , g(p1) + eArg(p1),

c1 − eArc1, g
(1) − eArg(1), . . . , g(p1) − eArg(p1)).

(6)

For the multiplication with an interval matrixM, we split
M into a real-valued matrixM ∈ Rn×n and an interval
matrix with radiusS ∈ Rn×n, such thatM = M ⊕ [−S, S].
After introducing Sj as the j th row of S, the result is
overapproximated as shown in [2, Theorem 3.3] by

MZ1 ⊆(MZ1 ⊕ [−S, S]Z1)

⊆(Mc1,Mg(1), . . . ,Mg(p1), h(1), . . . , h(n))

h
(i)
j =

{

Sj(|c|+
∑p1

k=1 |g|
(k)), for i = j

0, for i 6= j
.

We will also need the enclosure of a zonotope by a multidi-
mensional box [2, Prop. 2.2] and its absolute value:

box(Z1) :=[c1 −∆g, c1 +∆g], ∆g :=

p1∑

i=1

|g(i)|,

|Z1| :=|c1|+∆g.

(7)

The representation of reachable sets with zonotopes allowsan
efficient computation as presented later.

IV. CONSERVATIVE L INEARIZATION

To apply the methods presented in the previous section to
compute reachable sets for DAEs, an abstraction of the original
nonlinear DAEs to linear differential inclusions is performed
for each consecutive time intervalτk of the reachable set
computation (see Sec. III-A). A different abstraction is used
for each time interval to minimize the overapproximation
error. We first discuss the conservative linearization procedure,
followed by the linearization error handling.

A. Linearization Procedure

For a concise notation of the conservative linearization, we
introducez := [xT , yT , uT ]T , the linearization pointz∗ :=
[x∗T , y∗T , u∗T ]T , andRz := R(τk) × U . The linearization
point for the differential variables is chosen for each iteration
close to the center of the next reachable setR(τk), which is
a good heuristic for minimizing the linearization error. The
Euler integration method is used for the time increment0.5r
to approximate this point byx∗ = cd + 0.5r · f(cd, ca, cu),
wherecd, ca, cu are the volumetric centers of the setsRd(tk),
Ra(tk), andU . We chooseu∗ = cu and the linearization point
of the algebraic part is obtained by solving0 = g(x∗, y∗, u∗)
using a Newton-Raphson algorithm.

The linearization of (1) is performed using a first-order
Taylor expansion with Lagrangian remainder:

ẋi = fi(z(t)) ∈ fi(z
∗) +

∂fi(z)

∂z

∣
∣
∣
z=z∗

(z(t)− z∗)

⊕

{
1

2
(z(t)− z∗)T

∂2fi(z)

∂z2

∣
∣
∣
z=ξ

(z(t)− z∗)

∣
∣
∣
∣
ξ, z(t) ∈ Rz

}

︸ ︷︷ ︸

=:Ld
i

,

0 = gj(z(t)) ∈ gj(z
∗) +

∂gj(z)

∂z

∣
∣
∣
z=z∗

(z(t)− z∗)

⊕

{
1

2
(z(t)− z∗)T

∂2gj(z)

∂z2

∣
∣
∣
z=ξ

(z(t)− z∗)

∣
∣
∣
∣
ξ, z(t) ∈ Rz

}

︸ ︷︷ ︸

=:La
j

,

(8)
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whereLd
i denotes the projection ofLd onto theith coordinate.

The Lagrangian remaindersLd,La enclose all higher-order
terms if ξ can take any value of the linear combination ofz
and z∗, i.e. ξ ∈ {αz + (1 − α)z∗|α ∈ [0, 1]}, which follows
from the mean value theorem [12, p. 87]. Since for the time
interval τk, (1) z(t) can take any values fromRz , (2) Rz is
represented by a convex zonotope, and (3)z∗ is chosen as an
interior point of this set, it follows that forξ ∈ Rz the set of
Lagrangian remainders is captured.

For subsequent derivations, it is required to separate the
effects from differential variables, algebraic variables, and
inputs. Thereto, we define the following submatrices of the
Jacobians:
∂f(z)

∂z

∣
∣
∣
z=z∗

= [A, C, B],
∂g(z)

∂z

∣
∣
∣
z=z∗

= [D, F, E], (9)

where A ∈ Rnd×nd , B ∈ Rnd×m, C ∈ Rnd×na , D ∈
Rna×nd , E ∈ Rna×m, F ∈ Rna×na , and nd, na,m are
the number of differential, algebraic, and input variables,
respectively. Inserting the abbreviationz = [xT , yT , uT ]T and
the matricesA-F into the Taylor expansion (8), and intro-
ducingHd,(i)(ξ) := ∂2fi(z)

∂z2 )
∣
∣
z=ξ

, Ha,(j)(ξ) :=
∂2gj(z)
∂z2 )

∣
∣
z=ξ

,
Rz

∆ := Rz ⊕ (−z∗), ν(t) := z(t)− z∗, yields

ẋ ∈f(z∗) +A(x(t) − x∗

︸ ︷︷ ︸

=:∆x(t)

) +B(u(t)− u∗

︸ ︷︷ ︸

=:∆u(t)

) + C(y(t)− y∗
︸ ︷︷ ︸

=:∆y(t)

)

⊕
{1

2
σ
∣
∣
∣σi = νTHd,(i)(ξ)ν, ξ ∈ Rz , ν ∈ Rz

∆

}

, (10)

0 ∈g(z∗) +D(x(t) − x∗

︸ ︷︷ ︸

=:∆x(t)

) + E(u(t)− u∗

︸ ︷︷ ︸

=:∆u(t)

) + F (y(t)− y∗
︸ ︷︷ ︸

=:∆y(t)

)

⊕
{1

2
φ
∣
∣
∣φj = νTHa,(j)(ξ)ν, ξ ∈ Rz , ν ∈ Rz

∆

}

. (11)

Note thatF is invertible because of the index-1 property, so
that we can reformulate (11) to

∆y(t) ∈ −F−1
(

g(z∗) +D∆x(t) + E∆u(t)
)

(12)

⊕
{

−
1

2
F−1φ

∣
∣
∣φj = νTHa,(j)(ξ)ν, ξ ∈ Rz , ν ∈ Rz

∆

}

.

Inserting (12) into (10) results in a differential inclusion

ẋ ∈f(z∗) +A∆x(t) +B∆u(t)

− CF−1
(
g(z∗) +D∆x(t) + E∆u(t)

)
⊕ L

=(w + Ã∆x(t) + B̃∆u(t))⊕ L,

(13)

where
w :=f(z∗)− CF−1g(z∗),

Ã :=A− CF−1D,

B̃ :=B − CF−1E.

(14)

and

L =
{1

2
(σ − CF−1φ)

∣
∣
∣σi = νTHd,(i)(ξ)ν,

φj = νTHa,(j)(ξ)ν, ξ ∈ Rz, ν ∈ Rz
∆

}

.
(15)

We can further simplify (13) by combining the singletonw
and the sets̃B(U ⊕ (−u∗)), L to a new setŨ :

˙̃x ∈ Ãx̃(t)⊕ Ũ , (16)

x̃(t) := ∆x(t), Ũ := w ⊕ B̃(U ⊕ (−u∗))⊕ L.

Note that the set of possible solutions of the differential
inclusion (16) is the same as in (13) since uncertain inputs
can be considered by enlarging the set of the right-hand side
of the differential inclusion (see e.g. [13]).

B. Linearization Error Handling

The problem for evaluating (16) is that the set of lineariza-
tion errorsL is not known in advance, consequentlỹU is
unknown, too. As an initial guess we enlarge the most recently
computed linearization error̃L by a user-defined scalar factor
λ ∈ R+, so that

L = ĉ⊕ λ(L̃ ⊕ (−ĉ)) (17)

where ĉ is the volumetric center of̃L. If it turns out that the
enclosure assumption (L ⊇ L) is not correct,L has to be
further enlarged.

Proposition 1 (Conservativeness of the Abstraction)
If L ⊇ L, the solution of the original dynamics
γ(t, x(0), y(0), u(·)) is enclosed by the solution of the
abstracting differential inclusioṅ̃x ∈ Ãx̃(t) ⊕ w ⊕ B̃(U ⊕
(−u∗))⊕ L.

Proof: From (16) andL ⊇ L one obtains a strict model
inclusion from the original dynamics to the linear inclusions
using the linearization error sets:

∀t ∈ τk, x ∈ Rd(τk), y ∈ Ra(τk), u ∈ U :

ẋ = f(x, y, u) ∈Ã(x− x∗)⊕ w ⊕ B̃(U ⊕ (−u∗))⊕ L

⊆Ã(x− x∗)⊕ w ⊕ B̃(U ⊕ (−u∗))⊕ L,

i.e., all solutions of the original dynamics are included bythe
abstraction using the linearization errorL. The result is inde-
pendent of the amount of overapproximation of the reachable
setsRd(τk), Ra(τk) and of the amount of overapproximation
of L including the set of possible linearization errors.
Clearly, if L is largely overapproximated, one needs a larger
assumption forL and convergence is not guaranteed. In order
to ensure convergence, one additionally checks if

L ⊆ Lmax, (18)

whereLmax is set by the user. If the above inclusion is not
fulfilled, the reachable set has to be split in order to reducethe
linearization error until (18) is fulfilled. Another possibility is
to reduce the time incrementr. It is part of future work to find
criteria for deciding when it is better to split the reachable sets
and when it is better to reduce the time incrementr.

In the previous work [6], the linearization error set is
guessed asL = Lmax, which is constant over all iterations.
The time-varying adaption ofL in this work significantly
reduces the overapproximation by using the previous lineariza-
tion error and considering the fact that the linearization error
changes over time.

The computation of the set of linearization errors is ad-
dressed in the next section.
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V. COMPUTATION OF THEL INEARIZATION ERROR

The set of linearization errorsL is computed based on the
reachable setRd(τk) of the linear differential inclusion (16)
for the conservative uncertain input

U = w⊕ B̃(U ⊕ (−u∗))⊕L ⊇ w⊕ B̃(U ⊕ (−u∗))⊕L = Ũ .

In order to overapproximate the set of linearization errors,
we first have to reconstruct the reachable set for all variables
R(τk) from the reachable set for the differential variables
Rd(τk).

A. Reachable Set of Differential and Algebraic Variables

We compute the overapproximation of the reachable set
for the algebraic variables by replacing∆x with Rd

∆(τk) :=
Rd(τk) ⊕ (−x∗), ∆u with U∆ := U ⊕ (−u∗) in (12), and
translating the set byy∗:

Ra(τk) = y∗⊕(−F−1)
(
g(z∗)⊕DRd

∆(τk)⊕EU∆⊕L
a
(τk)

)
.

(19)
When combining the algebraic and the differential reachable
sets, it is important to consider the correlation between both
sets, which is evident due to the use ofRd

∆(τk) in (19). For a
concise notation we introduce the matrix of generatorsG :=
[
g(1) . . . g(p)

]
and the alternative short form of a zonotope

Z asZ = (c,G).

Proposition 2 (Differential-Algebraic Reachable Set)
Suppose Rd(τk) = (cd, Gd), U = (cu, Gu), and
L
a

= (cl, Gl). An overapproximation for the complete
reachable set for both the differential and algebraic variables
is

R(τk) =

([
cd

ca

]

,

[
Gd

0 0

−F−1DGd −F−1EGu −F−1Gl

])

,

whereca = y∗−F−1
(
g(z∗)+D(cd−x∗)+E(cu−u∗)+cl

)
,

and 0 is a matrix of zeros of proper dimension.

Proof: Using (12), the state of the differential-algebraic
system is bounded by

[
x(t)
y(t)

]

∈

[
x∗

y∗ − F−1g(z∗)

]

⊕

[
I

−F−1D

]

∆x(t)

⊕

[
0

−F−1E

]

∆u(t)⊕

[
0

−F−1

]

L
a
.

Inserting∆x(τk) ∈ (cd − x∗, Gd), ∆u(τk) ∈ (cu − u∗, Gu),
L
a
(τk) = (cl, Gl) into the above equation yields the proposed

computation ofR(τk) using the addition and multiplication
rule of zonotopes in (5).
Note that Proposition 2 is tighter than the Cartesian product
Rd(τk)×Ra(τk) because the latter has as many more gener-
ators, as the number of generators ofRd(τk). Next,R(τk) is
used to overapproximate the set of linearization errors.

B. Bounding the Lagrange Remainder

Using Rz = R(τk) × U andRz
∆ = Rz ⊕ (−z∗), we first

show the computation of the linearization error

Ld ⊆
1

2

{

σ
∣
∣
∣σi = νTHd,(i)(ξ)ν, ξ ∈ Rz, ν ∈ Rz

∆

}

, (20)

as shown in (10) and then generalize toL. Thereto, we
first compute the possible values of the second derivative
Hd,(i) := {Hd,(i)(ξ)|ξ ∈ Rz}. This is done by first computing
the enclosing boxI := box(Rz), which is obtained using (7).
By applying interval arithmetic, each element of the matrices
Hd,(i)(ξ) is evaluated forξ ∈ I using interval arithmetic [31].

Interval arithmetic can handle any standard expression,
but the result may be rather conservative since dependencies
between variables are neglected. To illustrate the effect of
dependencies between terms, we first introduce the addition
and multiplication rule for the scalar intervalsa = [a, a] and
b = [b, b]:

a ⊕ b =[a+ b, a+ b],

a ⊗ b =[min(a b, a b, a b, a b),max(a b, a b, a b, a b)].
(21)

The neglected dependency is best explained by a simple
example, where we computec = ab ⊕ a. For a = [−2,−1]
and b = [−1, 1], we obtain two different results depending
on the computation method:c = ab ⊕ a = [−4, 1] and
c̃ = a(b ⊕ 1) = [−4, 0], where only the latter result is exact.
This is because the exact result is obtained from a so-called
single-use expressionin which each interval occurs only once.
In the other case,a appears twice and can take different values
when obtaining the lower and upper limits of each operation,
although each variable is only allowed to have a single value
for each evaluation of the complete expression. This is referred
to as thedependency problem, which translates to general sets:

{a(b+ c)|a ∈ A, b ∈ B, c ∈ C}
︸ ︷︷ ︸

A⊗(B⊕C)

⊆{ab|a ∈ A, b ∈ B} ⊕ {ac|a ∈ A, c ∈ C}
︸ ︷︷ ︸

(A⊗B)⊕(A⊗C)

.
(22)

We present a new technique to compute the set of linearization
errors, which suffers much less from the dependency problem
as in the previous work [6] by first overapproximating (20)
with

Ld ⊆
1

2

{

σ
∣
∣
∣σi = νTHd,(i)ν, ν ∈ Rz

∆

}

. (23)

The new approach uses a newly developed overapproximation
of a quadratic map:

Lemma 1 (Quadratic Map) Given a zonotope
Z = (c, g(1), . . . , g(p)) and a discrete set of matrices
Q(i) ∈ Rn×n, i = 1 . . . n, the set

ZQ = {ϕ|ϕi = xTQ(i)x, x ∈ Z}

is overapproximated by a zonotope

quad(Q,Z) := (d, h(1), . . . , h(σ))

with σ =
(
p+2
2

)
− 1 generators, where the center is

di = cTQ(i)c+ 0.5

p
∑

s=1

g(s)
T
Q(i)g(s),
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and the generators are computed as

j =1 . . . p : h
(j)
i =cTQ(i)g(j) + g(j)

T
Q(i)c

j =1 . . . p : h
(p+j)
i =0.5g(j)

T
Q(i)g(j)

l =

p−1
∑

j=1

p
∑

k=j+1

1 : h
(2p+l)
i =g(j)

T
Q(i)g(k) + g(k)

T
Q(i)g(j)

The complexity of constructing this zonotope overapproxima-
tion with respect to the dimensionn is O(n5).

Proof: Inserting the definition of a zonotope into the set
ZQ = {ϕ|ϕi = xTQ(i)x, x ∈ Z} yields

{

ϕ
∣
∣
∣ϕi = (c+

p
∑

j=1

βjg
(j))TQ(i)(c+

p
∑

j=1

βjg
(j)), βj ∈ [−1, 1]

}

,

which can be rearranged to

ZQ =
{

ϕ
∣
∣
∣ϕi = cTQ(i)c+

p
∑

j=1

0.5g(j)
T
Q(i)g(j)

︸ ︷︷ ︸

di

+

p
∑

j=1

βj (c
TQ(i)g(j) + g(j)

T
Q(i)c)

︸ ︷︷ ︸

h
(j)
i

+

p
∑

j=1

(2β2
j − 1) 0.5g(j)

T
Q(i)g(j)

︸ ︷︷ ︸

h
(p+j)
i

+

p−1
∑

j=1

p
∑

k=j+1

βjβk (g
(j)TQ(i)g(k) + g(k)

T
Q(i)g(j))

︸ ︷︷ ︸

h
(2p+l)
i

,

βi ∈ [−1, 1]
}

⊆
(

d, h(1), . . . , h(σ)
)

.

The obtained zonotope is an overapproximation sinceβj ∈
[−1, 1], (2β2

j − 1) ∈ [−1, 1], and βjβk ∈ [−1, 1] for j 6=
k. The number of new generators is obtained from the fact
that the new generatorsh(j) are computed by picking two
elements from the set containing all generators and the center,
where replacement is allowed and order does not matter. By
subtracting the possibility that one can choose two centers,
one obtainsσ =

(
p+2
2

)
− 1 generators.

It remains to derive the complexity. Quadratic operations
such asg(j)

T
Q(i)g(k) have complexityO(n2). The number

p of generators ofZ can be expressed by its order asρ n,
such that the resulting zonotope has

(
(ρ n)+2

2

)
− 1 generators,

a number which can be bounded byO(n2), such that we have
O(n4) for all generator computations for each dimension and
O(n5) for all dimensions.

The above Lemma is used in the proof of the following
Proposition to overapproximateLd in (23).

Proposition 3 (Linearization Error) Let each Hd,(i) be
bounded by an interval matrix, the linearization error ac-
cording to (23) is overapproximated by first computing
quad(Hd,Rz

∆) according to Lemma 1, except that the cen-
ter and generators are computed via interval arithmetic, so
that one obtains an interval centerd = dc ⊕ [−d∆, d∆],

dc, d∆ ∈ Rn and interval generatorsh(i) = h
(i)
c ⊕[−h

(i)
∆ , h

(i)
∆ ],

hc, h∆ ∈ Rn. Using these interval-valued results, the overap-
proximating zonotope with real-valued center and generators
is

Ld ⊆
1

2

{

zTHd,(i)z
∣
∣
∣z ∈ Rz

∆

}

⊆
1

2
quadint(Hd,Rz

∆),

where

quadint(Hd,Rz
∆) := (dc, h

(1)
c , . . . , h(σ)

c , l(1), . . . , l(n)),

and

l
(m)
j =

{

d∆,j +
∑σ

i=1 h
(i)
∆,j, for m = j

0, for m 6= j
.

The complexity with respect to the dimensionn is O(n5).

Proof: The interval valued centerd and generatorsh(i)

represent the set

(dc ⊕ [−d∆, d∆]
︸ ︷︷ ︸

=d

)
σ⊕

i=1

(

[−1, 1]⊗ (h(i)
c ⊕ [−h

(i)
∆ , h

(i)
∆ ]

︸ ︷︷ ︸

=h(i)

)

(22)
⊆ dc

σ⊕

i=1

(

[−1, 1]⊗ h(i)
c

)

︸ ︷︷ ︸

=(dc,h
(1)
c ,...,h

(σ)
c )

⊕ [−d∆, d∆]
σ⊕

i=1

(

[−1, 1]⊗ [−h
(i)
∆ , h

(i)
∆ ]
)

︸ ︷︷ ︸

=[−y,y], y=d∆+
∑

σ
i=1 h

(i)
∆

.

It remains to reformulate the multidimensional interval[−y, y]
to the zonotope(0, l(1), . . . , l(n)), where 0 is a vector of
zeros of proper dimension andl(i) are the generators from
the proposition.

The above technique uses interval arithmetic extensively,
which slows down the computation compared to Lemma 1.
The following lemma shows that interval arithmetic can be
avoided for multiplication with symmetric intervals.

Lemma 2 (Symmetric Interval Matrix Multiplication)
[2, Lemma 3.2] ForN ∈ Rm×q and an interval matrix
S = [−S, S] with symmetric boundS ∈ Rq×l,

NS =
[
− |N |S, |N |S

]
, STNT =

[
− ST |NT |, ST |NT |

]
,

where the absolute value is applied elementwise.

Inspired by this result, we use an alternative computation of
Proposition 3, which surprisingly returns the exact same result
without interval arithmetic.

Theorem 1 (Interval-Free Computation of Ld)
After introducing Hd

c , H
d
∆ ∈ Rn×n such that

Hd = Hd
c ⊕ [−Hd

∆, H
d
∆], the equality

quadint(Hd,Rz
∆) = quad(Hd

c ,R
z
∆)⊕ [−η, η],

η := |Rz
∆|

THd
∆|R

z
∆|

holds.

Proof: For simplicity of notation, we first introduce the
vectors λ(i), where λ(1) = c represents the center, and
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λ(2), . . . , λ(σ+1) the generators ofRz
∆. In Lemma 1, the

operationquad(Hd,Rz
∆) is broken down into expressions of

the form

λ(i)T (Hd
c ⊕ [−Hd

∆, H
d
∆])λ

(j) =

λ(i)THd
c λ

(j)

︸ ︷︷ ︸

fixed value

⊕λ(i)T [−Hd
∆, H

d
∆]λ

(j)

︸ ︷︷ ︸

symmetric value

,

where the equality follows from the fact that the set-valued
components have only a single occurrence. Due to the equality
and the fact that each result has a fixed and symmetric part,
we can conclude that the valuesdc andh(m)

c in Proposition 3
exactly matchλ(i)THd

c λ
(j) for corresponding choices ofi, j.

Thus, using the variables from Proposition 3, we have that

quad(Hd
c ,R

z
∆) =(dc, h

(1)
c , . . . , h(σ)

c )

quad([−Hd
∆, H

d
∆],R

z
∆) =([−d∆, d∆], [−h

(1)
∆ , h

(1)
∆ ], . . . ,

[−h
(σ)
∆ , h

(σ)
∆ ])

=(0, l(1), . . . , l(n)).

Using the above result, one can conclude that

quadint(Hd,Rz
∆) = (dc, h

(1)
c , . . . , h(σ)

c , l(1), . . . , l(n)) =

quad(Hd
c ,R

z
∆)⊕ quad([−Hd

∆, H
d
∆],R

z
∆)

One can further simplifyquad([−Hd
∆, H

d
∆],R

z
∆) to

quad([−Hd
∆, H

d
∆],R

z
∆) =

p+1
⊕

i=1

p+1
⊕

j=1

(

[−1, 1]λ(i)[−Hd
∆, H

d
∆]λ

(j)
)

Lemma 2
=

[−1, 1]

p+1
∑

i=1

p+1
∑

j=1

(

|λ(i)|Hd
∆|λ

(j)|
)

=

[−1, 1]
( p+1
∑

i=1

|λ(i)|
)

︸ ︷︷ ︸

=|Rz
∆|, see (7)

Hd
∆

( p+1
∑

j=1

|λ(j)|
)

︸ ︷︷ ︸

=|Rz
∆|, see (7)

which concludes the proof.
It follows from Lemma 1 that the linearization error compu-
tation using Theorem 1 has complexityO(n5) with respect to
the dimensionn.

In the previous work [6], the set of linearization errors is
bounded usingI∆ := box(Rz

∆) by

Ld
i ⊆ IT

∆ ⊗Hd,(i) ⊗ I∆ ⊆ [−Li, Li], (24)

Li = |I∆|
T |Hd,(i)| |I∆|.

The computational complexity of (24) with respect to the
system dimension isO(n3) since the quadratic evaluation
for the ith coordinate isO(n2) and there aren coordinates.
Depending on the nonlinear dynamics, the linearization error
computation in (24) might suffer from substantial overapproxi-
mation. For the power system example in Sec. VII, one cannot
even compute the first time interval using the technique from
[6] since the linearization error computation does not stabilize.

It remains to compute the linearization errorL in (15) using
the techniques presented above.

Corollary 1 (Interval-Free Computation of L) Given the
zonotopesLd

c = quad(Hd
c ,R

z
∆) = (d,H) and La

c =
quad(Ha

c ,R
z
∆) = (e, V ) computed as presented in Lemma 1,

the overapproximative set of linearization errors is computed
as

L =
1

2
(d− CF−1e,H − CF−1V )
︸ ︷︷ ︸

=:Lc

⊕
1

2

(
[−ζ, ζ]⊕ (−CF−1)[−̺, ̺]

)

︸ ︷︷ ︸

=:L∆

,

ζ := |Rz
∆|

THd
∆|R

z
∆|, ̺ := |Rz

∆|
THa

∆|R
z
∆|.

Proof: We split the computation of the Lagrangian re-
mainder in (15) as follows:

L =
{1

2
(σ − CF

−1
φ)

∣

∣

∣
σi = ν

T
H

d,(i)(ξ)ν,

φj = ν
T
H

a,(j)(ξ)ν, ξ ∈ R
z
, ν ∈ R

z
∆

}

⊆

{1

2
(σ − CF

−1
φ)

∣

∣

∣σi = ν
T
H

d,(i)
c ν, φj = ν

T
H

a,(j)
c ν, ν ∈ R

z
∆

}

⊕

{1

2
(σ − CF

−1
φ)

∣

∣

∣σi = ν
T [−H

d,(i)
∆ , H

d,(i)
∆ ]ν,

φj = ν
T [−H

a,(j)
∆ , H

a,(j)
∆ ]ν, ν ∈ R

z
∆

}

Theorem1
⊆ Lc ⊕ L∆

We overapproximateLc by using the fact thatquad(Hd
c ,R

z
∆)

and quad(Ha
c ,R

z
∆) return zonotopes with generators multi-

plied by the same sequence of multipliersβi and βj , see
Lemma 1. From this follows thatLc ⊆ (d + CF−1e,H +
CF−1V ), where it is additionally considered that the multi-
plication with CF−1 is computed such that the sequence of
scalar multipliers is preserved.
The overapproximative computation of the linearization error
as well as the other presented techniques are assembled in the
next section to the overall algorithm of the proposed approach.

VI. OVERALL ALGORITHM

The overall algorithm for computing an overapproximation
of the reachable set for the nonlinear, semi-explicit, index-1
DAE in (1) is summarized in Alg. 1. The overapproximation
of the reachable set is obtained by combining the conservative
linearization procedure, the previously known techniquesfor
reachability analysis of linear differential inclusions,and the
improved approach for computing the linearization error. The
algorithm consists of three major parts:

➀ Computing a linearization and the corresponding set
of linearization errorsL of the current time interval.
The overapproximated reachable setR(τs) based on the
assumption of linearization errorsL is obtained as a by-
product from this computation.

➁ Splitting of reachable sets when the set of linearization
errorsL is too large.

➂ Computing the tightly overapproximated reachable set
at the next point in timeR(ts+1) using the set of
linearization errorsL. It is crucial thatR(ts+1) is tightly
overapproximated since the reachable set of the next
point in time and the next time interval are based on
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this set. This is in contrast to the reachable set for the
time interval, since it only has a small contribution on
the wrapping-effect by influencing the size ofL.

These steps are also reflected in Alg. 1. The linearization error
computation in➀ starts by computing the coefficientsA, B, C,
D, E, F in (9) for the linearization pointz∗ of the current time
interval, which are combined tow, Ã, B̃ according to (14), a
process which is abbreviated bytaylor(Rd(tk)) → w, Ã, B̃
in line 3 of Alg. 1. The assumption on the linearization erroris
computed in line 5 by slightly enlarging the set of the previous
linearization errors. In line 7, the reachable setRd(τk) for a
whole time interval is computed based on the linear differential
inclusion in (16) and the uncertain inputU (line 6), which
in turn is based onL (line 5). The reachable set of the
differential variables is complemented to the set of all variables
in line 8, which is then used in line 9 to overapproximate
the set of linearization errors. IfL ⊆ L, Rd(τk) is a valid
overapproximation, see Proposition 1, otherwise, the loophas
to be repeated for a new assumption on the linearization error.

When the reachable set is split intoR(1)(ts),R(2)(ts)
in line 12, which is indicated bysplit(R(tk)) →
R(1)(ts),R(2)(ts), one has to recursively call Alg. 1 for the
remaining time horizon.

Finally, the reachable set for the next point in time is
computed in line 19 using the linearization errorL so that one
obtains the uncertain input̃U ⊆ U for the linear differential
inclusion in (16). The reachable set for the time interval isnot
re-computed using the refined inputŨ since its contribution
to the wrapping-effect is marginal as previously discussed.

VII. POWER SYSTEM EXAMPLE

We apply our approach to a power system problem. The
verification task is to show that after a power drop-out of a
power plant and its subsequent reconnection to the grid, the
system state comes back to its original operating point. We
show this for a set of initial states by computing the reachable
set of the differential variables until it is enclosed by the
initial set again. This problem is known astransient stability
analysisin the power system literature [34]. The power system
is modeled by the IEEE 14-bus benchmark power system
network to which we add power generators, which provide
the dynamic part, while the algebraic part originates from
the power system network. The model has14 differential and
28 algebraic variables, giving a total of42 continuous state
variables.

Note that guaranteed transient stability analysis cannot be
achieved using Monte-Carlo simulation since the set of initial
states is uncertain, so it is possible to miss the simulations
which do not return to the original operating point. Other
methods for analyzing transient stability besides Monte Carlo
simulation are summarized in [39]. Besides numerical simula-
tion, the other model-based techniques are based on Lyapunov
methods for determining regions of attraction, i.e. regions
from where all trajectories converge to the operating point
of the power system [1], [15], [45]. Lyapunov methods are a
formal technique, but they suffer from (1) conservative results,
meaning that the region of attraction is often largely under-
approximated for larger systems, and (2) require simplified

Algorithm 1 reach(R(0), tf , r,U ,Lmax, λ)

Require: Initial setRd(0), input setU , time horizontf , time
stepr, max. linearization errorLmax, factorλ

Ensure: Rd([0, tf ])
1: t0 = 0, k = 0, L = {0}, Runion = ∅, u∗ = center(U)
2: while tk < tf do
3: taylor(Rd(tk)) → w, Ã, B̃ (see (9), (14))
4: repeat
5: L = ĉ⊕ λ(L ⊕ (−ĉ)) (see (17))
6: U = w ⊕ B̃(U ⊕ (−u∗))⊕ L (see (16))

7:

Rd(τk) = CH
(
Rd(tk), eÃ

rRd(tk)⊕ Γ(r)uc

)

⊕Rd
ǫ ⊕Rd

p

(
U ⊕ (−uc), r

)
(see (4))

8: computeR(τk) using Prop. 2
9: computeL using Corollary 1

10: until L ⊆ L ∨ L * Lmax

11: if L * Lmax then
12: split(R(tk)) → R(1)(tk),R(2)(tk)
13: R(1)([tk, tf ]) = reach(R(1)(tk), (tf − tk), ...)
14: R(2)([tk, tf ]) = reach(R(2)(tk), (tf − tk), ...)

15:

Runion = Runion ∪R(1)([tk, tf ])

∪R(2)([tk, tf ])
16: tk = tf
17: else
18: Ũ = w ⊕ B̃(U ⊕ (−u∗))⊕ L (see (16))

19:

Rd(tk+1) = eÃrRd(tk)⊕ Γ(r)uc

⊕Rd
p(Ũ ⊕ (−uc), r) (see (4))

20: Runion = Runion ∪Rd(τk)
21: tk+1 = tk + r, k := k + 1
22: end if
23: end while
24: Rd([0, tf ]) = Runion

➀

➁

➂

models. Especially in the multi-machine case, one often hasto
neglect transfer conductances and replace some time-varying
generator states by constants. There also exists a number of
model-free analysis techniques, such as pattern recognition,
expert systems, and neural nets, see [39].

Reachability analysis for power systems has been consid-
ered in [16], [32], [49], but only for small problems. In
[32], transient stability analysis is performed using level-sets
for a single-machine-infinite-bus system modeled by ODEs
with only 2 state variables. A slightly larger double-machine-
infinite-bus system with2 buses described by ODEs with5
state variables is considered in [49]. There, the reachability
analysis is performed by checking if cells of a discretized state
space can be reached from other cells by numerical simulation.
In [16], an initial DAE model is simplified to ODEs and further
to linear ODEs, without considering errors made during each
conversion. A 3-bus system is considered in that work, and
effects on wind variability rather than transient stability are
investigated.

We first present the mathematical model of the power
system and then show the results of the reachability analysis.
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A. Mathematical Model

We use the IEEE 14-bus benchmark system enhanced by
generator dynamics, which is depicted in Fig. 2. In order to
obtain the correct equations for the relatively complex 14-
bus system, we auto-generate the equations using symbolic
computations in MATLAB. First, the power flow equations
are obtained according to [46] for each bus, where variable
indices refer to the bus number. The absolute value of the bus
voltage is denoted by|Vi| [p.u] (p.u.: per unit), the angle of the
bus voltage byΘi [rad], the active power byPi [p.u.], and the
reactive power byQi [p.u.], where inflow of power is positive.
The buses are connected via admittancesYij = Yji, wherei
and j are the indices of the connected buses. The absolute
value and the angle of the admittances are denoted by|Yij |
andΨij = ∠Yij , respectively. The active and reactive power
of each bus results from the generator productionPg,i, Qg,i

and a demand of that nodePd,i, Qd,i. In order to compute
the generated power, we additionally have to introduce the
generator voltageEi [p.u.], the generator phase angleδ̃i [rad],
and the admittance from the generator to theith generator bus
Yg,i, where|Yg,i| [p.u.], Ψg,i = ∠Yg,i [rad] are the absolute
values and phase angles, respectively.

We reorder the numbering of the power network buses,
whereNg is the number of generators andNl is the number
of load buses. In this work, the first bus (i = 1) is connected
to a generator and serves as the slack bus, whose generator
phase anglẽδ1 is the reference for all other generator phase
anglesδi := δ̃i − δ̃1 and bus phase anglesΘi := Θ̃i − δ̃1.
Further, the power system hasNg so-calledgenerator buses,
which are connected to generators. Those buses (including the
slack bus) produce active and reactive power according to the
following equations (see [46]):

Pg,i = EiVi|Yg,i| cos(Ψg,i + δi −Θi)− V 2
i |Yg,i| cos(Ψg,i),

Qg,i = −EiVi|Yg,i| sin(Ψg,i + δi −Θi) + V 2
i |Yg,i| sin(Ψg,i).

The remainingNl buses are referred to asload buses(i =
Ng + 1 . . .Ng +Nl), which are power sinks. The power flow
equations as in [46, p.174] of each bus are

Pi = Pg,i + Pd,i =

Ng+Nl∑

j=1

ViVj |Yij | cos(Ψij +Θj −Θi),

Qi = Qg,i +Qd,i = −

Ng+Nl∑

j=1

ViVj |Yij | sin(Ψij +Θj −Θi).

(25)

So far, only the algebraic equations of the power system
are introduced. The dynamic equations are described by the
generator dynamics. For simplicity, we use the same model for
all generators and synchronous condensers, where the latter are
generators that produce no active power. The variables of the
ith generator are the voltage angleδi [rad], the angular velocity
ωi [rad/s], and the torqueTm,i [p.u.], and the commanded
powersPc,i [p.u.]. The following set of differential equations

describes the generator dynamics [16]:

δ̇i = ωi − ω1

ω̇i = −
Di

Mi

(ωi − ω1) +
1

Mi

Tm,i −
1

Mi

Pg,i

Ṫm,i = −
1

TSV,iRD,iωs

(ωi − ωs)−
1

TSV,i

Tm,i +
1

TSV,i

Pc,i,

(26)

whereMi [MJ/Hz2] is the rotational inertia,Di [s/rad] the
damping coefficient,TSV,i [s] is the time constant of the
governor, and 1

RD,i
[-] is the proportional gain of the governor.

For i = 1, the dynamics is solely described byω andTm since
the phase angle is always0.

The power drop-out of theith power plant is modeled by
setting the active and reactive power in (25) and (26) to zero
(Pg,i = 0, Qg,i = 0). In order to write the power system in the
standard form of time-invariant, semi-explicit, index-1 DAEs
presented in (1), we rename the dynamic, algebraic, and input
variables. The algebraic variables are changed to

i = 1 . . .Ng : yi = Ei,
i = 1 . . .Nl : yNg+i = VNg+i,
i = 1 . . . (Ng +Nl) : yNg+Nl+i = Θi,

the dynamic variables to

i = 2 . . .Ng : xi−1 = δi,
i = 1 . . .Ng : xNg+i−1 = ωi,
i = 1 . . .Ng : x2Ng+i−1 = Tm,i,

and the inputs to

i = 1 . . .Ng : ui = Pc,i.

When theith power plant is not on the grid, the variableEi

is removed from (25), (26), and is no longer an unknown
variable. We replaceyi = Ei by yi = Vi during the power
drop-out, since the power plant can no longer control the
voltage at theith bus.

The generator parameters of the IEEE 14-bus system are
listed in Tab. I and we refer to [51] for the parameters of the
power grid.

TABLE I
PARAMETERS OF THE GENERATORS.

∀i: Mi Di |Yg,i| Ψg,i TSV,i RD,i ωs
1

15π
0.04 5 −π

2
1 0.05 120π

B. Reachability Analysis

We investigate the transient stability by a power drop-out of
the largest power plant at bus1. The power system is in normal
operation for the first time intervalt = [0, 0.1] [s], which we
call pre-fault phase. In the time intervalt = [0.1, 0.13] [s],
the power plant at bus1 producing the most power is taken
off the grid, which we refer to as thefault-on phase. Att =
0.13 [s], the power plant is reconnected, which starts thepost-
fault phase. The reachable set computation is stopped when
the reachable set of differential variables is enclosed by the
initial set of states, proving that all differential state variables
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Fig. 2. IEEE 14-bus benchmark system.

return to the original operating point (steady state). We choose
the set of initial states as∀i : δi(0) ∈ δ0i ⊕ 0.01 · [−1, 1],
ωi(0) ∈ ω0

i ⊕ 0.1 · [−1, 1], Tm,i(0) ∈ T 0
m,i ⊕ 0.001 · [−1, 1],

where the superscripted zero refers to the steady state solution.
For the reachability analysis we use a time increment of

r = 0.001 [s] in the fault-on mode,r = 0.005 [s] for the
pre-fault mode and the post-fault mode untilt = 2 [s], and
r = 0.02 [s] for the remaining time in the post-fault mode.
We restrict the order of zonotopes toρ = 400 and the order
of zonotopes for the linearization error computation toρ̃ = 3
using the order reduction method in [25].

The reachable sets of the entire time horizon for selected
projections onto differential and algebraic variables areshown
in Fig. 3. The simulations of system trajectories from randomly
chosen initial states are indicated by black lines. Note that
the algebraic values jump when the power plant is taken off
the grid and when it is reconnected to the grid. At timet =
4.32 [s], the initial set is reached after540 iterations, which
is shown for selected projections in Fig. 4. For the entire time
horizon, it is not required to split the reachable set.

The computations took3889 [s] to compute in MATLAB
on an i7 Processor and6GB memory. Around a third of the
computation time is spent on computing the set of Hessian
matricesHd and Ha using interval arithmetic, and another
third on computing the linearization error for a given set of
Hessian matrices. Note that the Hessian matrices have to be
computed anyway, even when using the linearization error
computation of the previous work [6].

We are not able to compare the obtained reachable sets
with other methods, since none of the previous work on
systems with DAEs would scale to the size of the problem
presented here (to the best knowledge of the authors). On a
further note, the difficulty of reachability analysis problems
not only depends on the number of state variables, but also
how well a method fits to the characteristics of the problem,
the combination of nonlinear terms in differential equations,
and the size of the initial set of states as well as the input set.
To the best knowledge of the authors, there is no publication

that ranks nonlinear expressions in terms of difficulty for
reachability analysis.
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T
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Fig. 4. Reachable set of selected projections at timet = 4.32 [s] when
all solutions have returned to the initial set. The dark grayarea shows the
reachable set and the black box shows the initial set.

VIII. C ONCLUSION

This paper presents an approach for overapproximatively
computing reachable sets of systems with differential-algebraic
equations. The presented method scales favorably with the
system dimension due to the use of zonotopes for the set
representation. Our approach can be applied to any nonlinear,
semi-explicit, index-1 DAE system and any nonlinear system
of ODEs with unique solutions for all consistent initial states.
It has been shown that the computation of the set of lineariza-
tion errors has drastically improved compared to the previous
method [6], which already cannot be stabilized at the first
time interval without splitting. When the set of linearization
errors becomes too large, it is necessary to split the reachable
set as described in [6]. When many splits are required, it is
advantageous to use zonotope bundles as a set representation
[3]. The method can be integrated in the reachability analysis
of hybrid systems by considering changes in the continuous
dynamics when hitting so calledguard sets[4], [23]. Future
work should focus on further investigating on how to compute
tighter linearization error bounds.
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