Reachability Computation of Low-Order Models for the Safety
Verification of High-Order Road Vehicle Models

Matthias Althoff and John M. Dolan

Abstract—We present an approach to verify the planned moose test, and cornering. One way to check behavior
maneuvers of an automated car. The main idea is to compute inclusion is to check if the reachable set of the high-order
the occupancy of the automated car on the road using reachadl  |,54el is enclosed by the one of the low-order model. Note
sets, which makes it possible to check if one collides with loer . . . .
traffic participants, or leaves the drivable area. The spedlty that this requires to project the states of the high-ordedeho
of the presented approach is that all possible uncertaintie onto the ones of the low-order model. However, the reachable
in the form of sensor noise, uncertain friction coefficient, set computation of the high-order model is too challenging
and uncertain initial states, are considered. Maneuvers & for current reachable set algorithms due to the large number
periodically verified on-board to account for the variety of ¢ <i5t0 variables and the large nonlinearity measuresduist
possible traffic situations, requiring an efficient algorithm. . - . .

Thus, the underlying vehicle model has to be a compromise W& try tp falsify behavior |n(_:lu3|on by s.earchmg for states
between accuracy and simplicity. The inexactness of the metl  Of the high-order model, which are not in the reachable set
is compensated by adding disturbance to the model such that of the low-order model. We use rapidly-exploring random
it contains high-order model behavior. This is demonstrate by  trees (RRTs) to guide the simulation such that interesting
exploring the state space with rapidly-exploring random trees i 1ation traces are further explored, while uninteresti
(RRTSs) of a high-order model and check whether it leaves the U .
reachable area of the low-order model used for verification. pnes Qre abgndoneq. If no falsification can be found during
intensive offline testing, the reachable set of the low-brde
. INTRODUCTION model (computed online) is assumed to contain all high+orde

A major motivation for developing (semi-)automated carehaviors.

is the vision of g_ccident—freg driving, which can also b.enseeA' Related Work

as the precondition for making automated cars a reality. The N ) )

main challenges in verifying the safety of those vehicles is Litérature on reachability analysis of dynamical systems
that (i) every traffic situation is different, (ii) the vegc With continuous or hybrid (mixed discrete/continuous) dy-
behavior has to be safe considering all sources of unceytain@mics is summarized in [1]. Since the vehicle model in this
(iii) the vehicle has to be safe even when certain decisiof@P€r has nonlinear continuous dynamics, we focus on this
making components fail. In this work we address all threElaSS of systems: Most approaches compute reachable sets of

issues: Our approach is flexible by verifying each traffi@onlinear systems by abstracting to differential inclosiof -
situation individually on-board. We compute all possiblesiMPIer dynamics, either by simplifying the dynamics withi

states which the ego-vehicle and other traffic participanf€9ions of a fixed state space partition [2], [3], resulting i
can reach from a set of possible initial states, under a sathyPrid system, or by simplification in the vicinity of the

of possible inputs and parameters. We also describe a fdjgachable set [4]-[6]. The latter approach generally autpe

safe verification procedure, i.e., the vehicle comes to a safP'™ms fixed state space partitions since it does not require

stop even when decision-making components fail. the consideration of hybrid dynamics. Approaches which

Since the safety verification relies on mathematical modefl® NOt use abstraction are mostly based on optimization

of vehicle behavior, the result can only be as good as tHgchniques which are computationally too expensive for an
model describing the real behavior. Due to the time corNline verification [7]-[9]. The method applied in this work

straints of the verification procedure, the vehicle dynamidS P@sed on [5], which uses zonotopes as a set representation
model has to be chosen such that only the main effects Jdrr nonlinear systems in contrast to the other referencec_i
considered. However, in this work, we show that even higt2PProaches. As a consequence, the proposed approach, which
order models are represented by the reachability analysis @Stracts to linear systems, is efficient, since zonotdpes s

low-order models when the set of initial states is enlarged®at performance for linear systems [10].
and disturbance is added. From now on. we refer to this 1Nere is a rich literature on finding counterexamples for
property as behavior inclusion. (safety) specifications of dynamic systems. In this work, we

We relax the problem of behavior inclusion by checkind!S€ RRTS, which were originally developed for planning

only a finite number of test maneuvers: evasive maneuvé’r{Ob'ems in robotics [11]. The extension to other control
problems, such as discrete and hybrid systems, is desdnibed
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tive for neighboring trajectories based on sensitivitylgsia  set of the ego-vehicle. The road occupancy is obtained from
[16] or approximate bisimulation metrics [17]. While RRTsthe reachable set by enlarging the set of center of gravity
are specialized for increasing coverage of the state spag®sitions based on the vehicle body dimensions and the set
another line of Monte-Carlo-based techniques guides simof vehicle orientations [19].
lations such that temporal logic properties are falsifiethwi  The interaction between the trajectory planner and the
high probability [18]. verification planner is important, especially since the tra
In a previous work, the authors verified maneuvers géctory planner might not find a safe trajectory on time.
automated cars using reachability analysis [19]. This workhus, we propose a fail-safe approach, i.e., even if the
is an extension in many respects: We use RRTs to chepkanning algorithm or the verification algorithm does not
whether the high-order dynamics is enclosed by computirtgrminate on time, the automated vehicle comes to a safe
the reachable set of the low-order model when enlargtop. In order to achieve the fail-safe property, we comnside
ing uncertainties. In addition, we consider uncertain roadeference trajectories that consist of two parts: The figst p
tire friction, which is considered the most influential anddescribes the actual maneuver the vehicle should follod, an
unpredictable parameter of the vehicle dynamics, and wibe second part describes a braking trajectory, which bring
consider load transfers in the low-order model to improvéhe vehicle to a safe stop (see Fig. 3#fe stopneans that the
the reachable set results. Finally, a description of how theehicle should not stop in, e.g., lanes with oncoming traffic
trajectory planner interacts with the verification modude ior in railroad intersections. Note that the braking maneis/e
presented. only executed when the vehicle does not find a new trajectory
. on time.
B. Outline In order to ensure that the vehicle always follows a
In Sec. Il we introduce the fail-safe procedure for safetyerified maneuver, new maneuvers are restricted to branch
verification. The models of the low- and high-order vehicleyf previously verified maneuvers at specific positions. skhe
dynamics, including the control law of the vehicle, are showpgsitions are chosen such that the new maneuver is already
in Sec. Ill. The reachable set computation is presenteden Seyerified when the vehicle approaches it. This is predictable
IV and the RRT algorithm in Sec. V. Finally, the resultssince the required time of the proposed verification albarit
of the reachability analysis and the model falsification arg proportional to the execution time of the planned maneu-
presented in Sec. VI. ver. Given the ratio\ = Jx<= of verification timet,., to
maneuver execution tImQ;ec the planning algorithm has

Gi ‘ ) f th hicle ol hto plan a reference trajectory which branches off the previo
lven a reterence trajectory of the vehicle planner, thgnq afterat,.., time, wheret,,.., is the execution time of

presented verification procedure decides if this traj§Ctohy,e new maneuver (see Fig. 1). In case the verification takes

can be safely followed. This decision is made based on tthhexpectedly longer, one can still use the previously tifi

occupancy of other traffic participants and the ego-vehitle o The vehicle model for checking these plans is presented
the occupancy of the ego-vehicle does not intersect with thﬁext.

of other vehicles for any of the considered consecutive time

II. FAIL-SAFE VERIFICATION PROCEDURE

intervals|ts, tx11], and does not leave the drivable area, the I1l. V EHICLE DYNAMICS
maneuver is safe (see Fig. 1). We briefly introduce the low-order dynamic model used
iti occupancy at for the reachability analysis and the high-order model to
position other idi
att = Anow \l_ t = [to, 1] —‘\' vehicle check the validity of the reachable sets.
Y A. Low-Order Model

|_ | I:El The basis of the low-order model is a bicycle model

] - N T braking which describes the basic effects of the lateral dynamics fo
x + % constant velocity, which is, e.g., used for yaw stabilizatpf
automated  poace  CoCHPANSY at ol ref. new ref. vehicles. The namebicycle moderefers to the fact that the
car t=lty-1,ty] trajectory  trajectory front and rear wheel pairs are each lumped into one wheel,

Fig. 1. Verification by checking emptiness of occupancy rsgetion. since the roll dynamics is not considered (see Fig. 2 and
[20, Chap. 2.6]). In order to model the controlled vehicle,
The occupancy of other vehicles is based on an assumpti@@ add the possibility to accelerate the vehicle and include
of maximum acceleration and a simple set of traffic ruleghe equations describing the position on the road. These two
such as respecting speed limits and driving in dedicategslanenhancements result in the model described in our previous
(see the example in [19]). If the other traffic participan&fs  work [19]. In the current work, we additionally consider the
automated car, it might simply broadcast its own predicteghad transfer of the vehicle due to longitudinal accelerati

occupancy. The occupancy of the ego-vehicle has to bg (neglecting suspension dynamics), such that the vertical
computed in more detall, since it has to be checked whethgjrces on the front and rear axis, s and F. . become

the reference trajectory can be tracked under all disturd@n

. L . . mgl, — mazh mgly + magh
and if the deviation is small enough to avoid crashes. In  F, ; = 0 F,, = —
this paper, we focus on the computation of the reachable rtly rtly



with parameters from Tab. |. These forces are inserted intndividual spin and slip, and nonlinear tire dynamics. The
the derivation of the equations for the slip angle (at thenulti-body dynamics is described Bymasses: The unsprung
center of gravity)3 and the yaw raté [20, Chap. 2.6]. The mass and the sprung mass of the front and rear axles. The
dynamics for the inputg (steering angle)q, (longitudinal forces between these masses are described by the dynamics

acceleration), and the parameters in Tab. | are: of the suspension and the tire model.
We considered all suspension forces in [21, Appendix A]
b= o(l, +l ) (CSJ(QZT —agh)d originating from springs, dampers, and anti-roll bars. \WWe d

B B not consider flexibilities in the steering system, bump stop
(Co,rlgly + ach) + Cs 5 (glr = azh)) , and squat/lift forces caused by the suspension geometry.
qj . . . .
(Cs.r(gly + agh)l, — Cs.¢(gly — awh)lf)—) _ The veh|cle para_metgrs are taken f_rom vehitlein [21,
v Appendix E], which is a BMW 320i. Parameters of that

:%(lfcs,f(glr — agh)s vehicle applicable to the bicycle model are shown in Tab.
z\0r TOf l.
+ (rCsr(gly + agh) — 15 Cs f(gly — azh)) B For the tire dynamics we use the PAC2002 Magic-Formula
) ) ] tire model, which is widely used in industry [22]. The
- (lfCSaf(glr — azh) +7Csr(gly + agh)) g) combined lateral and longitudinal tire forces are computed

from the slip angle, the camber angle, and the vertical tire
force described in [21, Appendix A]. The tire parameters for
all 4 wheels are taken from the example of a PAC2002 tire

U =ay

Sz =vcos(f+ )

$y =vsin(f + ¥) property file in [22]. The cornering stiffness coefficiarit ;
Rewriting the above equations in state space form yield§quired for the bicycle model is obtained from the nonlmea
a 6-dimensional model with the state vector = model by linearizing at zero slip angle.

(8, @, ¥, v, s,, s,]7. Note that we do not use the cornering Rewriting all equations as a state space model yields
St|ﬁnessc’ as is typ|ca||y done for b|Cyc|e models, but28 state variables. All state Varlables |nCIUd|ng theiriadit
separate the effect of the friction coefficigntthe cornering Values, are listed in Tab. Il, where the pali§ rf, Ir, rr
stiffness coefficient’s, and the vertical force”,, such that indicate left/right and front/rear. Denoting the initiaate
C; = uCs,iF.; andi = {f,r} for the front and rear axle. variables of the bicycle model by a superscrigtethe initial
This separation is done because the friction coefficierttas t states of the high-order model due to coordinate system
most dominant parameter, which is investigated later. TH@ansformanns and zero initial tire slip assumption are:
uncertainty of the friction is specified by an interval in Tab%o = —¥§, Wo = —Wf, wo = v, 0/ R, va0 = cos(—B8)vp,

I, representing dry conditions. vy,0 = sin(=B5)vh, vy .0 = vy,0+1Wo, vyro = vy0—1 Vo,

Zi,0 = Fz1,0/(2KZt) (Z € {Tv f})' Sz,0 = Sla)c,O' Sy,0 = _SZ,O’
which use the effective tire radiug, the distances from the
center of gravity to the front and rear axle, [,, the tire
spring ratekK .;, and the vertical forces’ o, F.,o of the
front and rear due to gravity.

Y
{Sx} TABLE I
T Sy

INITIAL VALUES OF THE HIGH-ORDER MODEL

Fig. 2. Bicycle model. sprung mass unsprung mass other
init. init. init.
name val. name val. name val.
TABLE | yaw ang. ¥ rollang. () 0 wheel speed (If) wo
BICYCLE MODEL PARAMETERS yaw rate  ¥q roll rate (f) 0O wheel speed (rf) wo
roll angle 0 rollang. (r) 0 wheel speed (Ir) wo
description symbol  value unit r(_)II rate 0 roll rate () 0 W_he_el_ spe_ed (m  wo
vehiclg L my 0533 kg pitch ang. 0 y-vel. (f) vyfg0  pinjoint diff. () 0
moment of inertia (yaw) I 1791.6 kg m2 pitch rate 0 y-vel. () vyro  Pin joint diff. (r) 0
distance from c.g. to front axle l; 1.1562 m xvelocity  vg0 - 2-pos. (f) Zf,0  X-position $2,0
distance from c.g. to rear axle I, 1.4227 m y-velocity Sy’o z-vel. (f) 0 y-position 59,0
height of c.g. above ground  h 0.6137 ;:Sgggi(:n 0 iegls(g) 8“0
cornering stiffness coefficient Cg ; 20.898  1l/rad Y :
friction coefficient I 0.8,1] —
C. Vehicle Controller
B. High-Order Model The vehicle controller is identical to the one proposed

The high-order model is taken out of [21, Appendix A].in [19], except that the controller parameter vector=
Unlike the bicycle model, this model considers the vertical0.2, 2, 0.3, 1, 10]7 is slightly changed to smaller gains so
load of all 4 wheels due to roll, pitch, and yaw, theirthat the control performance is still good for larger sensor



noise. We use a positioning system that combines GPS dats. an additional uncertain input, as presented in the next
with inertial measurements to accurately measure the posibsection.

tionss,, s,, the yaw anglel, the yaw ratel, and the veloc- .

ity v. The corresponding sensor noise is combined in the vef: Basic Procedure
tor u = [ug, uy, ww, Uy, uy]’ € [—1,1]0.08x[—1,1]0.08 x For a concise notation of the linearization procedure, the
[—1,1]0.27/180 x [—1,1]0.27 /180 x [—1, 1]0.08. The refer-  state vector: and the input vector are combined to form
ence values for the control are denoted by a subscripgedti a new vectorz = [z7, u”|7. The reference trajectory is
are held constant for time intervdls, ¢, 1], wheret;,, = kr, not included, since it is certain, and thus a linearization
k € N is the time step, and € R* is the step size. These with respect to that vector is not required. The parameter
values are combined i = [s,.4, 5.4, Va4, Wa, va]7. With  p, however, is uncertain, but its influence is not linearized.
the introduced variables, the control law for the steerindlthough this linearization is possible, it would result in

angleé and the vehicle acceleratian. is much larger linearization errors in the vehicle dynamibss(t
has been tested, but results are not shown due to space
. limitations). In addition, the parameter influences thaeys
§ =k1 (COS(%)(Sy’d ST Uy_) B Suj‘(\lld)(s””’d T u”)) dynamics by a multiplication with the state (unlike more
+ho(Vg— VU —uw) + k3(Vag— ¥ —uy), complicated nonlinear operations), which can be elegantly

@ :k‘4(cos(\11d)(sz’d s — ug) + sin(Wa) (sp.a — 5y — uy)) expr_essed by uncertain state and input matrices for which
efficient reachable set approaches exist for constant 8] a
time-varying parameters [24].

. . . . Using a first-order Taylor expansion around the lineariza-
Combining the vehicle controller with the low- and hlgh-tion point [z*T, w*T]T, the original differential equation of

order T"Ode' yields the corresponding conirolled Veh'd?hez'th coordinate is enclosed by the differential inclusion
dynamics, denoted by = f(z,w,u,p), wherep = pu
is the uncertain friction coefficient. The uncertain fracti V¢ € 7 :

+ ks(vg — v — uy).

coefficient could also be modeled as part of the uncertain - Afi(z,w*,p) s

@nptl;tu; hk())wever, ltmcerthairt;_:_oad fri<|:ti0_n is tr:_ear;te_zd diffegznt]y zi € fi(z", w',p) + 92 L F ) eLi(m),

in the subsequent reachability analysis, which is empbeésiz =c;(p) A (a2t B ) (],

by this separate variable. 1)
IV. REACHABILITY ANALYSIS where® denotes a Minkowski additidrand £ is the set of

This section describes the basic principle for computing@9range remainders
reachable sets subject to sensor noise and uncertairffricti 1 o O fi(z,w*, p) .
coefficient. We denote the solution of the vehicle dynamics i Tk):{g(z -z 022 _‘225(2 —2")

& = f(z,w,u,p) for x(0) = zo, t € [0,¢;], and trajectories
w(). u(), p() by x(t,z0.w(-). u().p()). Note thatu(") €< R(m) xUp <P}
refers to a trajectory, where(t) refers to the value of the For more detailed information on the computationfyfthe
trajectory at timet. The exact reachable set for a giveninterested reader is referred to [19], [25].
reference trajectory” () and a set of sensor noise valués  The linearization point*(r) = [2*(;), u*]T is chosen
1S asu® = center(U) andz* (1) = Z(t), where we linearize
. along the nominal trajectory(-) obtained by a simulation
RE([0:241) = {X(t’xo’w(')’u(')’p('))’t € 0.4, starting in the center oR(0) s(u)bject to the input.*.
20 € R(0), w(t) = w* (1), u(t) € U, p(t) 7;}. For each time intervdty,, t,1] (tx41 = tx+7), the system
is linearized, making it possible to apply the superpositio
The uncertain input(t) is a piecewise continuous function, principle for an inputv(t) so thatu (1) = " (tx1) +
whereas the reference functiar(t) is constant within time 2'(r), where
intervalst;, = [tx, tr+1] and updated at times,. Although
p(t) may vary continuously over time, we restrict this ” 5
function to be piecewise constant, as foft), in order to 2 (r) :/ A=y (t) dt (input solution) (2)
apply a more accurate reachability approach for uncertain 0
parameters. Since for nonlinear systems, the reachable $eis approach is also used when computing with sets,
cannot be computed exactly, we compute overapproximatiopglding the reachable set of a time interGal([ty, tx11]) in

2 (ty) = e x(ty)  (initial state solution)

R([0,t5]) 2 Re([0,t5]). 3 steps (see Fig. 3). These steps involve the multiplication
The overapproximations in this work are obtained byf sets A ® B := {abla € A,b € B}):
linearizing the nonlinear dynamics = f(x,w,u,p) SO 1) Initial state solution:

that techniques for linear systems can be applied as pro- = Rh(z, . \) = {AP)7|p € P} @ R(t))
posed in an earlier work [5]. In order to guarantee an
overapproximative result, the linearization error is ddased 1Given are sets in Euclidean spadeB: A®B = {a+bla € A,b € B}



2) Convex hull computatiorCH(R(t), R" (tx,1)) for uncertain parameter, we propose a new and tight overap-
the approximation withirjty, t541]. proximation:
3) Addition of the reachable set of the input solutio

Ri(r) and an error ter® (see [25]) making the resultnTheorem 1 (Matrix Exponential Set (Single Parameter)):

overapproximative: The set of matrix exponential§e®”|A € A}, where
' A = {C+BGIB € [-1,1],Cy,GY € R™"} is a

R(t = CH(R(tx), R"(t R! D. _ _ . .
(te41) (R( _k)’, (brt1)) & RY(r) 69, . .matrix zonotope with one generator matrix, can be tightly
When the set of uncertain inputs does not contain the origiByerapproximated by

the above procedure has to be slightly modified [25]. For

a tight overapproximation, it is important to account for {eA"|A € A} CK(r) @ E(r).

parametric dependencies, which are addressed in the next

subsection. The matrix exponential remaindel(r) is computed as in
[23] and K(r) is a matrix zonotope with the center

R(tk) —>

R™(tr41))
R(tr)

a ] O

] l [n/2] @)
=0 =1

where|-] is the floor function, and the generators

| i=t Hi T, 1
by Ri(r) ® D 0557, Fr for evenl.

enlargement ) { 1 D for unevenl
Gy =

The matrix center and generators use auxiliary matrices,

Fig. 3. Computation of the reachable set for a time intefgl tx41]. which are iteratively obtained for a giva'ng Nt

D; = D;_1C
B. Considering Parametric Dependencies Ff” = Di1G+ Fi(i)lC
In order to consider parametric dependencies, we take [=2...(i—1): F’= F'7V¢+F"C
advantage of the special structure whereby the pararpeter Fi(z) = Fi(:”G,
influences the system matriA(p), the input matrixB(p), where Dy = I (I is the identity matrix),Fél) —0. 0

and the constant input(p). After normalizing the param- .
eterp € P = [p,p], such that it is mapped to valuesProof: We first show tha{C + 8G)" = D; + >°,_; sEY
B(p) = (2p—P—p)/(B—p) € [-1,1], we can express the by induction:

aforementioned variables of the vehicle model &) = i1

Ca+ BGa, B(B) = Cp + fGp, c(B) = cc + Bge, Where (¢ 1 5G) = (Dioy + Y B'FY)(C + 6G)

Ca,Ga € R™", Cp,Gg € R™™, ¢, g. € R™!, and =

B € [-1,1]. The matricesd(3), B(8) can be bounded by a

. =(C+BG)I—1
matrix zonotope )

. =D 1C+B(Di1G+ F;21C)

— X (7') . _ (1) nxn =D

H=1{Cu+>_ BGY)|fi € [-1,1],Cu, Gy e R 1, : _pr®

i=1 i—1
WhiC!’l is us.ed later to bound the mz.ﬂrix exponen'gi)al.. The +Zﬂl(Fl-(:1)G+Fi(i)lc)-i-ﬁiﬂ(:l)(?-
matrix C'y is referred to as the matrix center arﬂi{ is —2 —
referred to as a matrix generator. The vect0f) can be o BiF"

1=2 i

analogously bounded by a zonotope which equals a matrix

zonotope, except that the center matrix and the generatdsing the Taylor terms of the matrix exponential in (3), we

matrices are replaced by a center vector and generawmstain

vectors. Matrix zonotopes are a generalization of interval n (C + BG)iri

matrices and thus provide tighter bounds for matrix set} [23 Z 7
We overapproximatively compute the exponential matrix  i=o

(Di + >, BED)r
7!

I
.MJ

~
Il
o

i!

eAP)r using a finite Taylor series up to order with a "o X " i
nr
remainder tern€(r), where&(r) is computed as in [23]: = ZDiﬁ +Zﬁl ZFi( )ﬁ
i=0 =1 =l
Ui i —— SN——
- A(B)r)" % ’
ey B o). @
1=0

When computing the set of matrices fore [—1, 1], the even
When the system matrix is bounded by a general matripowers have the rang#® < [0, 1], while the uneven powers
zonotope, it is difficult to tightly bound the set of possibleare in the ranges?*! € [—1,1]. Since matrix zonotopes
exponential matrices. However, in the event of only onbave generators with rangés1,1], the matrix generator



values representing even powers can be multipliedy When initializing X' (74+1) = X(7x), one obtains the ap-
and the center part can be added to the center of the matproach in [13].
zonotope, tightening the result. Thusi becomes’x and

Gg? becomeng?, as stated in the theorem. o .
Besides the initial state solution, the constant ingut) [~ Tadd
is subject to the same parameter (see (1)). Neglecting this % results of
dependence, the straightforward computation of the set of d:rf]fea?gt
input solutions (see (2)) would be performed as in [25] by P
Jo eMtdt @ C, using A(B) € A, c¢(8) € C. However, this
dependence is important, since the values(6f might have -
a dominant effect depending on the linearization pointngsi T th thit t'
Theorem 1, this dependence can be taken care of by inserting
(3) into (2), such that one obtains the partial input sohutio Fig. 4. RRT concept for trajectory tracking.
. mo pitl T We sample the spac#,.; relative to the nominal tra-
() = ZAZ(B)C(ﬁ)m @ / E(r)dt c(B). jectory z*(t) used for linearization, which is chosen as a
=0 < multidimensional rectangle centered at the origin witheedg
CE(r)r, see [23] lengthsls = 0.4, ly = 04, 1, = 4,1, = 2, I, = 4,

The terms A*(B)c(8) = (C + BG)'(cc + Bgc) can be ;= 4, which are chosen such that the reachable sets
computed similarly, as shown in the proof of Theorem Ifor all time intervals are enclosed. Best results have been
yielding a similar result enclosed by a zonotope. The secorgbtained by first choosing, as the vertices oft,.; and
input £ (see (1)) contributing to the set of input solutionsthen uniformly sampling¥,..;. Combined deterministic and
R' does not have these dependencies and is computed astifichastic sampling has been reported as advantageous for
previous work [23]. sampling-based planning, too [26].

We use zonotopes as a representation for reachable set¥he distance measure is simply chosenpés,, (V) =
R([tk,tr+1]), since they are efficient (complexity with re- | N(z, — 2(?)||, with the normalization matrixN =
spect to the system dimensianis O(n?)), numerically sta- diag(L, &, A&, +, /- 7). The normalization is important

. . lﬂ’l\ll’l\j/7lv’lsm7s1 ) . 3
ble, and are the only known representation that can effigientsince otherwise the coordinates of high numerical value

compute the set multiplication with matrix zonotopes. would be preferred.
The optimal v that drives z,, to z, i.e., minimizes
V. RAPIDLY-EXPLORING RANDOM TREES p(zaaq, xs), is chosen by testing all vertices of the set of

In this section, we describe the RRT algorithm designeB0SSible inputs/. For the RRT computation, we add the
to falsify the reachable set of the low-order model. In cafse ¢incertain frictiony as an additional uncertain input to the
a violation, the reachable set computation of the low-ordé}ther inputsu (see Sec. 11I-C) in order to simplify the nota-
model is adapted by enlarging the set of initial states arféf"- Thus, we obtain a manageable se6éinputs. In [13], -
the additive disturbancy, such thatP € f (i, w,u,p)&V, the system dynamics is linearized and linear programming

whereP is the projection matrix from the high-order vehicle!S USéd to obtain the optimal input. However, for the vehicle

statez to the low-order vehicle staté. dynamics, the input matrix does not have full rank, so that
RRTs have been used in [13] to underapproximate reachS technique cannot be used. Other optimization teclesqu

able sets. In contrast to [13], which tries to generally covefre 100 time consuming due_ _to the h'gh_ order of the model

the state space, we consider the problem of covering 128 state yarlables). In ad.d|t|0n, sampling over all corner

area around a reference trajectory. Although we use the saff>€S O is always numerically stable.

basic technique, we make a modification to generate the same VI. NUMERICAL EXPERIMENTS

number of samples for each time interval, see Fig. 4: We demonstrate the proposed techniques for reachable sets

1) Initialize the discrete set of states for the next timend RRTs on three standard maneuvers: Evasive maneuver
interval asX'(7i41) = 0. (lane change and braking), moose test (double lane change),
2) Generate a sample, from the state space. cornering (braking towards the apex, followed by accelerat
3) Find the nearest state, according to a distance jng). We first give a detailed description of the maneuvers
m(e)asure(p 5)0 thatz, = argmin(p(zs,2")), where and then present numerical results.
z\W e X(1).
4) Obtain the input: which drivesz, to the new state A- Tested Maneuvers
ZTada ClOSEst tor,. The capabilities of a vehicle can be roughly described by
5) Add x.44 to the set of states for the next time intervalkamm'’s circle, which shows the border of possible combined
X (Tit1)- lateral acceleratioru,, and longitudinal acceleratiom,,,
6) Repeat steps 2-5 for a predefined number of samplegmbined ina = [a,, a,]7. We design the reference tra-
then go to the next time interval and start with step ljectories by providing the directio@ and the absolute value



aqps = ||a]|2 of the acceleration in vehicle-fixed coordinatessuccessively enlarging the uncertain input of statevhen
ensuring that the accelerations are within Kamm'’s cirate. Ithe reachable interval of that state has been violated.cHns
addition, we restrict the jerk = ||a||» of the vehicle, since be easily automated given an increment of the enlargement
the steering, acceleration, and braking cannot be changfed each coordinate.
instantaneously. In addition to the additive disturbance, we enlarged the ini
We encode the maneuvers by the directibnthe abso- tial set of states, which is chosen®$0) = [—0.02,0.02] x
lute valuea,,s, and their duration. When the accelerationf—0.05,0.05] x [—0.05,0.05] x [14.8,15.2] x [—0.2,0.2] x
changes, the acceleration ratg,.., = 50 [m/s®] towards [-0.2,0.2], by 5% in each direction for the reachable set
the new acceleration is applied, resulting in a trajectory computations. The time step for updating the reference
for a, anda,. The reference values of the maneuvers areajectory isr = 0.01 s.
obtained from the acceleration as: The reachable set for fixed friction is slightly tighter
t . ay (1) t than for uncertain friction, where both pass the falsifwati
va(t) = / az(T)dr, Wu(t) = -2 e Uy(t) = / Uy(r)dr, test. This is illustrated for different projections in Fig.
0 . va(t) 0 5 for the moose test; other plots are neglected due to
Sp.a(t) = / cos(V4(7))vg(r)dr, space restrictions, which show similar results. Howewes, t
ot reachable set computations without uncertain parameters a
. much more efficient. The computation times for a prototype
sy.a(t) _/0 sin(¥a(7))va(7)dr. implementation in MATLAB on an Intel i7 Processor with
In Tab. Il we summarize the tested maneuvers. Note that a]II6 GH.Z and6 GB memory are shown !N Tab. V. Fpr
. o . comparison, we also added the computation time of a single
maneuvers are highly dynamic, i.e., relatively close to the. . . :
maximum possible tire forces. Simulation run of the hlgh-order model using the standard
Runge-Kutta solver (ode45) in MATLAB. The computation

TABLE I times are obtained under the assumption that the lineamzat
SPECIFICATION OF TESTED MANEUVERS is done in a parallel process together with the reachability
computation of the linearized system. One can observe that

Aqbs [M/S]  [rad] duration [s] even for the MATLAB implementation, the fixed-friction
fa"aé"é%?ane”ve{oﬁj&_0.757_1]11 10.4,0.75, 0.63, 0.65] case is faster than the execution time of the maneuvers.
moose test Future implementations in C++ should improve these num-

[0,8,8,0,8,8,0] 0.5[0,1,~1,0,—1,1,0]IT [0.4,0.84,1,1,0.84,1,0.4]  pers. Note that the reachable set computations of uncertain
([:Oorge:r;go] [0,0.7,0.3, 0]1I [0.4,1,1,0.4] friction would have become numerically unstable (reachabl
set grows excessively fast) when the parameter dependence

discussed in Sec. IV-B had not been considered.

B. Results TABLE IV

For each of the presented maneuvers we compute a RRT COMPUTATIONAL TIMES IN SECONDS

and compare the results with reachability analysis. We com= maneuver _comp. ime ___comp. tme __sim. fime
pute two different reachable sets: The first one considers th_maneuver  time [s]  (no unc. par) (unc. par) (high-or)
uncertain friction as presented in Sec. IV; the second one is¢™ mane. o Sy e o
computed identically, except that the specific frictior= 0.9 cornering 2.8 1.53 4.86 4.18
is considered instead. For both cases, we present the added
disturbance for which all RRT states of all maneuvers and
time intervals are contained in the corresponding reaehabl
sets R([tx, tr+1]). In order to efficiently check enclosure
of the RRT states, we modify the reachable sets in a post-We have presented two versions of reachable set com-
processing procedure by replacing them by their enclosimmutations: One which directly considers uncertain frigfio
boxes for each time interval. another one which considers it indirectly by adding distur-
When considering uncertain friction, one only has to adtance. It is shown that in both cases, the sets contain all
disturbance to the longitudinal acceleration £ 0 x 0 x  states of a high-order vehicle model generated by a RRT
0 x [0,—1] x 0 x 0) in order to enclose all RRT states.when adding disturbance and slightly enlarging the set of
The reason for the required disturbance is that in the higlmnitial states. The computation with a fixed friction pardere
order model, the vehicle slows down for large slip angles considerably faster and thus preferred, unless thadnict
due to tire friction — an effect that is not modeled by thecoefficient has high uncertainty. When using a fixed friction
bicycle model. In the other case, when uncertain frictioparameter, the MATLAB prototype was already faster than
is not directly modeled, the additive disturbance has to biae execution time of the maneuver. The approach also shows
enlarged byY = [—0.15,0.15] x 0 x 0 x [0,—1] x 0 x 0 in  that the simulation of the high-order model takes an amount
order to account for the uncertainty in the slip anglelue of time similar to that of the reachable set computation,
to uncertain friction. These numbers have been obtained yhich encloses the high-order behavior.

VII. CONCLUSIONS
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