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Abstract

This paper presents the theoretical basis for the simulaiia control of active helicopter blades.
The analysis is based on a model that considers the strudguramics, the aerodynamics, as well
as the integrated blade actuation and sensing. The effeabeahtegral actuation enters the beam
model via an active beam cross-sectional analysis. A 2-Dnmpressible, inviscid, quasi-steady
aerodynamic model is coupled to the active structural modet simulation, analysis, and control

design, the blade model is discretized in space using a Kéalapproach. The resulting nonlinear

Work has been presented at the 47th Structures, Structyredrics & Materials Conference, Newport,
Rhode Island, May 2006.
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model of high order is reduced using the aeroelastic modésedblade. Finally, the usefulness of

a reduced order model is demonstrated by designing an eoptgyal linear-quadratic-Gaussian

control.
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Nomenclature

axes of the deformed beam
axes of the undeformed beam
internal force

external force

angular momentum

cost function

state feedback controller gain
internal moment

external moment

linear momentum

power due to active elements
power due to forces at the boundaries
power due to external loads
time function

kinetic energy

transformation matrix

time

potential energy

voltage

linear velocity

beam reference line

normalized beam reference line
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7y strain

K curvature

Q angular velocity
Typefaces

A, B,C, ... full order beam

A,B,C,... reduced order beam

A, B,C,... beam in state space form

O derivative with respect to the beam reference line
O absolute time derivative

00 steady state

0 exact boundary condition valueat= 0

Ot exact boundary condition valueat= L

o assumed mode 6f

Introduction

Active structures have the potential to outperform coneera structures in many ways. In the case of
helicopter blades, active structures can overcome the mmgpe between vibration and weight reduction
(Refs. 1,2). This potential has been investigated in tefstiseoActive Twist Rotor (ATR) blade, whose
parameters are the basis for the theoretical results gezbbarein. The present paper is a continuation of
the research presented in Traugott et al. in Ref. 3 dealitigtive nonlinear dynamic solution and control

design of active helicopter blades. The significant new ldgveents are:

e A structural dynamic model is used based on a nonlinear &@alapproach which is more efficient
as compared to the finite element method (FEM) (Ref. 4). Famgpte, in the linearized perturba-
tion analysis it is shown that using 10 modes for the Galegiproach and 10 nodes for the FEM
approach (both 120 states), tHé Bending mode frequency is accurate up to three significgitsdi

using the Galerkin approach while the FEM approach has an efi 0%.
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e A guasi-steady aerodynamic model is included.

¢ A nonlinear model order reduction technique is used to deaxilow-order, high fidelity nonlinear

blade model for control design.
e Nonlinear control design is investigated.

The paper is organized as follows. First, the blade modetisduced followed by the Galerkin approach
for spatial discretization. Modal analysis is presented aad the obtained normal modes are utilized for

model order reduction. Finally, the control design is dé&sad based on the reduced order model.

Blade M odel

Accurate modeling of active helicopter blade dynamics imeguto combine physical models of dif-
ferent domains. The four models which need to be developeédraegrated are: the structural dynamic
model, the aerodynamic model, the actuation model and th&rggemodel of the helicopter blade. The
structural and aerodynamic models are inherently nonlin€ae presented models are an extension of

earlier work of the authors in Refs. 4, 5.

Structural model

In order to compute the dynamics of the helicopter bladevatiomputational costs, a nonlinear beam
model developed by Hodges is used (Refs. 6, 7). This modebktakvantage of the one-dimensional
characteristics of a helicopter blade undergoing largerdedition and small strain and is a better choice
compared to 3-D finite-element analysis (Ref. 8). The beamdiation is intrinsic, i.e. neither displace-
ment nor rotation variables appear in the beam equations.inthnsic formulation is very compact and
furthermore applicable for general beams (anisotropin;maiform, twisted and curved).

The beam model is composed of vector equations in terms ¢dveariables. The measure numbers
(or scalar components) of the vector variables in the deddrframe (B-frame) are used. The B-frame is
orthogonal and defined by the cross section of the deformaxhlas seen in Fig. 1. Thg,-axis and the

Bs-axis lie in the cross-section with the, -axis defined byB; = B, x Bs. Note that in this work, all
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variables are written in the B-frame of the deformed beam.

The intrinsic equations for the nonlinear dynamics of thaerbare:

F'+ (k+&)F + foero + fUt = P+ QP,
M+ (k+&)M + (& +7)F +m° +m®* = H + QH + VP, "
V' + (k+ &)V + (61 +7)02 = 4,
O+ (k+7)Q = £,

where ()’ denotes the derivative with respect to the beam refereneealnd( ) denotes the absolute
time derivative.F' and M are the measure numbers of the internal force and momermrygeneralized
forces), P and H are the measure numbers of the linear and angular momentctor (generalized
momenta),y and x are the beam strains and curvatures (generalized strainghd €2 are the linear
and angular velocity measure numbers (generalized vidskitThe external forces and moments due to
aerodynamic effects arg, m?® and due to disturbances af&*!, m@st respectivelyk = [k; ky ks
is the initial twist/curvature of the beam and= [1 0 0]7. The tilde operator transforms a vectoto a
matrixa so as to affect a cross product when left-multiplied to thetwme, i.e.,ab = a x b.

The intrinsic beam equations provideector equations fa$ vector unknownsk’, M, P, H, v, k, V,
Q2). In order to complete a solvable set of equatiensiore vector equations are needed. Two equations
relate the generalized forcek (M) and the generalized strains, (<) via the beam cross-section stiffness
matrix. The beam cross-section inertia matrix leads toehaion between the generalized momerfa (
H) and the generalized velocitiek ((2). Both relations are the constitutive equations for arvadtieam
and are derived from an accurate cross-sectional analgsig the theory of Patil and Johnson in Ref. 9

(for thin-walled beams) or Cesnik and Palacios in Ref. 10d@&neral configuration):

\ - 11

F R S ~ A
M sTT K MA
: - - (2)
P G K V
H KT | Q
Vs L .

whereR, S andT are the cross-sectional flexibilities, aAd', M4 are generalized forces induced by the
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active elements. The inertia matrices have the followinggonents:

1100 0 &z —pés By+8; 0 0
G=pl={0p0], K=—pe=|-pés 0 0 |, I=1 0 his|, ©
00 pu g€y 00 0 g B3

wherey, &, is, i3, fo3 are the mass per unit length, mass center offset and thedhoss-sectional mass

momenta of inertia per unit length.

Aerodynamic model

To take into account the primary aeroelastic effects, anrmressible, inviscid, quasi-steady, 2-D
aerodynamic model from Ref. 5 based on a finite-state airtoadel in Ref. 11 is used. The model
neglects the unsteady effects due to the wake. The aerodyhaaas f*“"° and m® in Eq. (1) are

calculated using:

0
Jer = —pbCioVaVs + pbCia V2 — pbCyao Vi ;

pbCioVi — pb(Cia + Cao)VaVs + 3 pb*Cra Vo @

) 4

200°Crno Vs — 10b°Cia Vol

rhoere — 0

0

\

where(') denotes a variable measured at mid-chord(@ndenotes a variable calculated at quarter-chord.

The parametep is the air density andélis the semi-chord. Moreover, one can see from Fig. 2 that:

%:%_ngh ‘72:‘/27 (5)
m?ero _ ﬁlcltero + (05 . g)bfgero.

After inserting Eqg. (5) into Eq. (4), the new equations camii&en in terms ofl” and(? as:

T T
feere = {o 1 0} VXYYV + VIXYEQ 4+ QTXH0) 4 {o 0 1} [VIYYV 4 vIYVRQ]
T (6)
maeTe — {1 0 0} [VTZVVV + VTZVQQ] 7



AHS Log No. xxxx 7

where the matrices used above are defined as:

-0 0 0 -0 0 0
YW= pb |0 Clo —(Cia + Cao) | - V= pb |0 —Cuo —Cio | »
00 0 0 0 Ciu
0 00 0 00
YV = pb® | (0.5 4 €)Cla + ECa0 00 - K= ¢pb® |y 00] >
0 00 —2C1, 00
- (7)
0 0 0 Cia 00
ZVV = pb® |0 2Cmo + (0.5 — €)Cio —(0.5 — €)(Cla + Cao) | » X2 =20 | 0 00|
0 0 0 0 00
0 00

7V = €pb® | 00 + (0.5 — €)Clao 0 0] -

0 00

Actuation model

The actuation in an active helicopter blade like the Actiwest Rotor (ATR) is provided by active fiber
composites (AFC) that are distributed as discrete segnosetsthe span of the blade (see Fig. 3). Each
segment may contain multiple layers of AFCs which can berotiatl independently (ATR contains four)
and induce constant generalized foré&sand A/4 in the blade structure (see Eq. (2)). The generalized

active forces are linearly related to the applied voltages a

-1

FA R S E
- Uy, (8)
MA ST F
whereu,, IS the applied voltage vector for one blade segment congisti multiple voltagest and[lF are
constants relating the applied voltage to the active géimedastrains which are transformed to the active

generalized forces via the cross-section stiffness maiitte cross-sectional flexibilities, S, andT are

as defined in Eq. (2).
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Sensing model

The helicopter blade is assumed to be equipped with a nunfbegudistantly distributed sensors
which measure the generalized strajrendx along the blade reference line. The results presented in the
later sections assume five sensor locations y4;1[L, wherey = 1...5 refers to they* sensor location
andL is the blade length. Furthermore, the sensors are assumeladt® the generalized strains linearly
to the voltage outputs as

_ [@ u»} =5l )
w(r =15
wherey, denotes the measured voltag@€sandP relate the sensed voltages to the generalized stfains
andx. Without loss of generality, the sensor matrices are sfiegdltoO = I andP = I, wherel € R3*3

is the identity matrix.

Galerkin Discretization

The helicopter blade model equations (Egs. (1), (2), (6), () form a solvable set withy, €2, s
and~ as unknowns. For simulation and analysis purposes, thiatiequset is discretized with respect
to space. Unlike the most common approaches based on tleediaihent method, the helicopter blade
model is discretized using a Galerkin approach (Ref. 12).uBing special weighting functions in the
Galerkin approach presented here, the approximated colfutifills the law of energy conservation if no
active elements are modeled (Ref. 4). If active elementsised, the law of energy conservation can be
fulfilled approximately. Additionally, the boundary cotidns of the problem are satisfied weakly in the

Galerkin approach.

Brief introduction to Galerkin discretization

For readers who are not familiar with the Galerkin approachrief introduction is presented in this

subsection. Consider a partial differential equation imeeof the variable w(x,t) given by:

f (w(z, t), w(z,t), W' (z,t), z, t) =0
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The solution can be approximated by a separation of vasablspace and time as

wle,t) = 3 Bila)alt)

such that the partial differential equations can be appnated as

f(@i(x), (), :(t), ¢i(1), =, 1) ~ 0. (10)

The right relation in Eq. (10) is not equal to zero in geneNdw, it is required that for each weighting

function¥,(x), k € N, the integral of Eg. (10) weighted by, (=) has to be zero.

/0 (W) f (@ule), ®(2), au(8), (1), 2 8)} dx = O (1)

The final equations (Eqg. (11)) are only ordinary differeigiguations in time as the integral eliminates
the space dependent partklfi — oo, the Galerkin approximation solves the original partidietential
equation exactly. The, are calledassumed modethe ¥, areweighting functionsnd theg; aretime

functions

Energy optimal weighting

In this subsection, the physical interpretation for a splechoice of weighting functions for the
Galerkin discretization of the blade model is given. Withtass of generality, the beam is assumed
to be cantilevered and thus the boundary conditions of tagéeblre chosen to constrain the generalized
velocities at the root:( = 0) and the generalized forces at the tip<€ 1) of the beam. The boundary

conditions can be written as:

VO)=V" Q0)=Q° F(L)=F" M(L)=M" (12)
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Consider the following weighted sum of all the differentegjuations from Eqg. (1) and the boundary

conditions from Eq. (12):
L
- [
0
VTP+§P—Ft4E+mF—ﬂ
YO [H+ QH+ VP — M — (k+F)M — (6 +7)F —m

Ny =V =@ +RV - (@ +9)0
+(F+FY [ -V = &+ RV - @ +7)9) 13)

(M + M) [ = @ = (kB9

}dx
—(F(0) + FA(0))" [V(0) = V°] — (M(0) + M*(0))" [2(0) — Q°]
V()" [F(L) - FY] + Q)" [M(L) - MY,
whereV? and® are the exact linear and angular velocities at the root,enfil and M* are the force
and moment at the tip. Note that the external forces due twdgaamic effects and disturbances in Eqg.

(13) are summarized gsandm for simplicity reasons. After integrating by parts and siifiyping Eq.

(13) we have
T+ U _ Pemt+Pbou +Pact*’ (14)

where the variables are defined in Table 1. Equation (148 sthe law of energy conservatiomif<” = 0

(passive beam). For active beaf&'" approximates the powét*“* generated by the active elements as:

Pt = /L{FAT [V + G+ RV + (@ +7)0] +M*7 [ + (+ B0 pdw+ FAT [V(0) - VO] +M27 [2(0) - 0] (15)
0 s T

~~7, see Eq. (1) ~Fk, see Eq. (1)

Thus, the weighting presented in Eq. (13) leads to an apmabe energy balance for the active beam.
The error of the energy balance in Eq. (14) is caused by theeagiements only. If weighting functions
other than those presented in Eq. (13) are used, there wélioe in the energy balance caused by all
values of Table 1. For this reason, the weighting functiosisduin this work provide the best known

solution in terms of energy conservation.
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Assumed modes and weighting functions

The unknown variables of the Galerkin discretization arprapimated according to Table 2 using
an expansion of products of known spatial functions (assumedes) and unknown temporal functions
(generalized coordinates). Note that a mixed matrix/tenstation is used (the dimensions are given
in the last row in the left column of Table 2) and all variablesre a common time functiof(t). The
advantage of the common time function is that the compledereiized blade model can be written in a
single equation.

The weighting functions for the Galerkin approach are l@lyichosen as shown in Eq. (13). Thus,
the set of weighing functions are the same as the set of Vasiald\fter substituting for the weighting
functions in terms of the expansions, we get a single equaliot since each generalized coordinate is
arbitrary, this leads to multiple equations for each set eiiglving functions. Hence, multiple equations
are obtained by the Galerkin integral by using each set aflig functions, e.g. the weighting function
V(z,t) is replaced by several assumed mo@#gsz).

In this work, the assumed modes for each variable and eaebtidin are chosen identically. Due to
numerical performance, orthogonal shifted Legendre fanstfrom (Ref. 13, pp. 332-357) have been

used.

Vi(z) = W(z) = n(7) = k() = T P(7), (16)

where! is a3 x 3 identity matrix,z is the normed coordinate of the beam reference line (), andP()
are the shifted Legendre functions. After applying the Gateapproach to Eq. (13) and discretizing the

measurement equation, the beam model has the following\iortten in matrix/tensor notation:

Ari@i + Brigi + Crijqiq; + D + Eputiy + FrinGithy + fro +my =0, a7)
17
yy - MyiQia

where

Bki - BZiOBC + Bsz'Ca Ckij = nguc + Cgi@}“O’ Dk - Dcha gku = l?z(; Be + glﬁtc (18)

The expressions for the tensors in Eqgs. (17) and (18) are givbhie appendix.
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Modal Analysis

In order to get an insight into the behavior of the helicofiilede, the steady state, natural frequen-
cies and natural modes (free vibration modes) are calalfateparameter values specified in Table
4. The steady state solutiofi of the helicopter blade has been computed for the boundamglico
tions specified in Eq. (12) with® = [0 0 0" m/s,F* =[0 0 0 N, M = [0 0 0] Nm,

0% = [0 0 72]7 rad/s. The solution has been obtained reliably using thetbl®Raphson algorithm
and is presented in Fig. 4 over the beam referencedimarying from0 to . = 1.397 [m]. The natural

frequencies and modes are obtained from the unforced irgebiblade model given by
Apidi + Brig; = 0, (19)
where
Api = A, By = Bri + (Crij + Ciji) @) + Frauis. (20)
The free vibration solution (fvs) of Eq. (19) is:

T
gl (t) = cngeMt + EigeMt = Ty, {eklt exlt} , (21)

~

where () denotes conjugate complex valuesand ¢, are the constant which can be calculated using
the initial conditionsy; andn; are the eigenvectors; and )\, denote the eigenvalues of Eq. (19), and
T, = [any  ¢nyl. Inserting Eq. (21) into Table 2 yields the natural mode¥ of), v andx given in
Table 3. Note that the calculations can be performed in tefimsal variables by considering the real and
imaginary parts of the set of complex conjugate eigenvedi@ef. 14). The natural frequencies of the
helicopter blade are presented in Table 5 and are comparediulis from the simulation tool NATASHA
(Ref. 5) and the purely structural model (no aerodynamigsj.the aeroelastic and the structural model,
20 Legendre functions have been used. The NATASHA results asedon 50 beam finite elements.
Firstly, the aeroelastic simulation theory presented enghper is validated by comparing to the results
generated by NATASHA. Secondly, one can see that the aeamdigs is mainly adding damping and

reducing the frequency of theé‘lbending mode. The dominant natural modes are shown in Fig. 5.
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Model Reduction

The discretization results in a model (Eq. (17)) of high ordepending on the number of assumed
modes. As both, the accuracy and the computational costmefrharching simulations increase with
the number of assumed modes, one has to choose a good coms@rafpossibility to avoid such a
compromise is to find assumed modes that capture the dynaifrties rotating blade more accurately as
compared to Legendre functions. The model order reductibovis this approach by taking low number
of relevant assumed modes to reduce the system order wlthamiihg accuracy.

One choice of assumed modes that capture the linear dynareitise natural modes of the system lin-
earized at the steady state. Since these modes are use@xp#resions applied to the complete nonlinear
model, the primary nonlinear behavior is also captured. réfeoto improve the nonlinear prediction of
the linear modes, perturbation modes as presented in Reft6 have also been investigated. Although
perturbation modes showed a better performance regamlihg tracking of natural frequencies, they can
lead to errors in the blade damping for equations in the miged. For this reason, only natural modes
are used for order reduction. Another advantage of the alatuodes is that the resulting reduced model
has the same, but less natural frequencies and modes atehezation point. Furthermore, the steady
state solution is included in the new approximation of theleloariables. Thus, the quality of the steady
state is not affected by the order reduction and the new ptsiateq’ is always zero, resulting into a
simple linearized reduced system.

The new variable approximations are listed in Table 6. Suwitstg the new assumed modes into Eq.

(17) yields
Ayd, + Bya, + Cysqras + Euy + Frru@rty + Tt fro + Tremy, = 0, 22)
Yy = My,q, + 9,
where
Ay = A TuTy, By = [Br+ Cuy+ Crji)d) + Friwtt)] TreTir,
Cus = Crij T T Tjs, By = [Eku + Frind?] The, (23)

Ftru - FkiuTktTira Myr = MyiTira

yg(/] - Myiqzoa
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and ()° denotes the steady-state solution. Since the modal exganalculates motion relative to the
nonlinear steady state, the steady state solution of theftremed system is alwayg = 0. The reduced
nonlinear system is the basis for low-order analysis asagelbr control design. A4, is invertible, the
state space formulation of Eq. (22) can be obtained by prigohuhg the first equation in Eq. (22) with

A, The state space formulation is:

qt - Btrqr + Ctrsqrqs + Etuuu + Ftruqruu + thfk + Hktmk7 (24)

Yy = Myd, + 9y,
where
By = —A;'Bir, Cos = Ay Chrs, B = AL Epa, 5
Firu= A, Frru, Gre = —A Tht, Hye = —A Th.

Even if the model is reduced, froa0 to 12 states, the reduced model still shows good performance.
Consider Fig. 6 where the natural modes of the f2dl)(states) and reduced states) model are com-
pared in two plots. The solid lines show the frequencies efftitl and the dashed lines the frequencies
of the reduced model. For the reduced order model the stedatBssare still computed using the full
model, but the reduced order models are obtained by usinggéesset of modeshapes. In the left plot,
the frequency variation is calculated under varying rotai speed?; and in the right one under varying
external forcef; (constant along reference line, rotation spe&d= 72rad/s). One can see that the natural
frequencies are not affected noticeably by a varying egtdamnce f5 (f3=50 N n ! is the estimated force

to lift the helicopter), whereas the rotation speed has anhrger effect. The reduced model is able to

track the change in the frequency accurately.

Control Design

To illustrate the use of the model for control design, a liregaimal controller is designed. The control
design takes advantage of the high fidelity and low order efréduced blade model in Eq. (24). An
energy optimal linear-quadratic-Gaussian (LQG) contedign is performed, which is the combination
of a Kalman filter and a linear-quadratic regulator (Ref..1%) order to show the robustness of the
controller, it is tested on a high fidelity model with twiceraany states as the model used for the control

design.
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Cost function

The linear-quadratic-Gaussian (LQG) control is optimahi& sense that it minimizes the cost function

T
J = E{ lim %/o [ u]"W]q u]dt} — min, (26)

T—oc0
where E{} is the expectation antl” a weighting matrix. In this work, the stateand the input: are
weighted separately, such tHatu]? W|q u] = q7 Qq + u’ Ru, whereQ weights the control error since
q = 0 is desired andR? the control effort. Since the controller is not determingdhe absolute values of
the weighting matrices, but their relative valuésis chosen to be identityd = 7). The weight of the

control errorQ is chosen as
- - T

| |6Ko ol e
—1
1 [t o KTl 0 0] |9 U Vv R S
Q:—a/ T le’, = ) (27)
2 Jo & 00U V| |e VT W ST T

or 0 0VIw| |®®

where the assumed modes are written in matrix notatioii, | are the inertia matrices from (2) afig

V, W are the cross-sectional stiffness matrices, which aréacbta the cross-sectional flexibilitiés S, T

from (2) by the inversion presented above. After insertigg 7) intoq” Qq of Eq. (26) we obtain
- - T ~

Vv GKOOf [V

Lo K1 0 of |QF Table 1
/ de "= a(T"+ V"), (28)
o [+ oou V| |y

K* 0 0VEW| |~k

where()* denotes variables measured from the steady staté/eg. " Tq, wheread’ ~ &V (Tq+¢°).
Consequently7™ andU* denote a pseudo kinetic and potential energy of the blad#éheltteady state
solution is zerod® = 0), T* = T andU* = U are the physical kinetic and potential energy. Eqg. (26) can

be written with Eq. (28) as

1 (7
J = E{ lim —/ [ (T + U*) + u"u] dt} — min. (29)
0

T—o00
The compromise between the blade energy minimization amanihimization of the control effort can

be adjusted by a single parameter
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For the Kalman filter design of the LQG controller, it is asadhthat the process and measurement
noise is white and Gaussian. The covariance of the extesrze f%*!, and the external moment?*t, as
well as the covariance of the measurement noisehich affects the measurementigs= M, q, +w +

y,, are chosen as

100 001 0 0
18 isT 18 isT —
B{flstfdistiy — g1 0|, E{m™m® Y =10 001 0 |, E{ww'}=1071. (30)
0010 0 0 0.01

The process noise is chosen such thhatdominates, which is the force required for the lift of thedda
while the process noise is equal for each element since all measurements are performed by the same

type of sensors.

Closed-L oop Results

The control design is performed based on a reduced mode tisinfirst6 normal modes (12 order
model). The controller is tested on a model withnormal modes (24 order model). For the control
design we chose the covariance matrices as presented ja({@@®hosen a$0®, and the other parameters
are as specified in Table 4. The exact values of the natugpldirecies and damping for the controlled and
uncontrolled blade are presented in Table 7. Note that &grincy of thé * torsion mode changes more
than other modes because of the large aerodynamic loadsciddiy thel* torsion mode.

In order to validate the controller, a simulation is coneulcstarting at the steady state, where the
controller is switched off fof.5 seconds, followed by a linear increase in the control gaithaoit is
fully active att = 0.6 seconds. As can be seen in Fig. 7, there is a considerableasecof the blade
energy when the controller is switched on.

Figure 8 shows the effect of the controller on the generdlizelocities and strains relative to the
steady state. The generalized strains at the root are glagiehese are typically the maximum values.
The same holds for the generalized velocities at the tip.mMé&amum measured voltage w2 V which

Is considerably less than the voltage saturatioh0of) V (see [Ref. 2]).
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Conclusions

The paper shows an effective way to analyze, simulate anttad@ctive helicopter blades. It takes
advantage of the Galerkin approach to efficiently repreg@nnonlinear blade dynamics in a quadratic
form. The analysis showed the importance of the aerodyrsariche blade model as it adds significant
damping. A nonlinear order reduction method has been predevhich can be useful for control design
as well as computationally efficient time marching simwaas. It exploits the potential of normal modes
in capturing the nonlinear blade dynamics. Finally, an gypaptimal LQG control design has been

performed that provides additional damping for the helieoplade.

Appendix

The tensors of the discretized blade model are given for pleeial case of a constant cross-section
(varying cross-sections are also possible). To ensure @eprformulation of the tensor calculations, a

hierarchical tensor notation is introduced.

Hierarchical tensor notation

Consider the approximation = ®} ¢; where eacl®} is a3 x 12 matrix and eachy; is a12 x 1 vector.
Now, defined; ) andg;,) with a = 1...12 whereV = &} ¢, is summarized in an inner loop over
and in an outer loop over Consequentlycbxa) becomes @ x 1 vector andy;,) a scalar. This definition
is necessary to e.g. obtain tf&" “-tensor where the tilde operator is used which is defined farl

vectors only. Note that for simplicity, the hierarchicalsture is often suppressed.

Abbreviations

In order to obtain a compact formulation of the tensor catah, some abbreviations are introduced.

First, thel constants are introduced:

WVI{IOOO} WQZ{OIOOL ‘I’”={0010]7 \1’”””:{0001]7 (31)
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wherel is a3 x 3 identity matrix. The abbreviations used for the Legendrefions are:

SP=Pu(0), Sy=Pu(l), D =P(0)Pi0), Dy =P (L)P(L), Sp= (32)

The abbreviations of the Legendre integrals are:

1 ut
Dl :[L/ {Pk(i’)Pi(f)}di’7 dgfses /6 {P;(fz)}da:,
o (Vs (33)
ol = [{r@r@le ol = [ {R@Ro e
0 (u=1)5
1
TS, =L / {Pk(f)Pi(:E)P](f)}dit
0
Tensor calculations
_nl v T v Q Q Tlprgv Q
Ak@it) = Dii { Yo [@‘I’(aﬁ“’(a)}“l’(c) [[K ‘I’(a>+”‘1’(a>]
r \T T k \T K
+ (VT + VL) [\I/Za)]Jr(W VW) [qz(a)]},
no BC _d f v T K QT T K
Bi(eyitay = "Di { Vi) [*"J‘I’?a)*v‘l’(a)]“l’(c) [*V ‘1’?@)*\”‘1’(@]
& \T 1% T k \T Q
+ (VW] + VL) [—\I'(a)] + (VIO + W) [—m(a)]}
J v T¢ K Q Tz T K ~ K
+Dj, { — ol [[k(wya) +w(a))] ~ v [rk(v W+ W) — & (U], +w(a))] -
& \T [TV ~ 9 T kAT | T\
— (U], + V)T [kl - @l | - (VIR W) [w(a)”,
struc T = e ~
ChlEiaie) = Ty { Uy [~ (U], + V) + B2 (G0, + KE)]
19 T, I~
+ [\yg)(u@\p&) HI0E) + B, (GU) + KET)) — Br, (V07
W) — B (VT + Wfb))]
rk \T T, 1% T, Q T r \T ST Q
+ (VB + VOE) T [0, W) - 07,8 + (VI + W) [fxp(a)\p(b)]}.
The tensor calculating the aerodynamic force and moment is:
T
aero _mf v T v T,vv gV v T,vagQ Q T,0075,0
Ck(c)i(a)j(b)*%{ Yoy {010} [‘I’(a) KWy + ¥y K7W + Wy K q’(b)]
v T g v Tyvv g,V v TyvaogyQ 35
t¥e (001 [‘I’w) YU+ W) Y ‘I’<b)] (35)

T
QT v Tovv gV v TovagQ
T ¥ {1 00} [‘I’w) 277V + ¥y £ ‘%)}}
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The actuation for constant cross-section is determined by:

EroBC = dglee { T (UE + VF) + 92 T (VTE + w)}

+s,{jeg{ \I,vT[[k](uEJFW)+\1:§1)T[rk](vT[E+w)+¢:?)T[ ](MHW)}

©
(36)
0 se T K K
FroBe = Dl { Wi [ | (VE + VE) + 0" [0, | (VIE + WF) + 9, [0 (a)](w[HW)}
fr andm,, are:
T
freey = S}{ { -0, f}y
@37)
M) = S}, { - ‘I’?C)Tm}
The tensors occurring due to boundary conditions are:
BC 0 0 T x \T'Ho
DSy =5Sp { (VW) + VIE) VO + (VIOD,) + WP, Q}
v T oL Q Ty
{ v FY w2 M }
BC 1% T Q
Bi&ita) = Dii { (Vg +vog,)" [‘I’(a)] (VOwg, + W) [‘I’(co]} (38)
A% T QT T K
+Dji { Uiy [U‘%) +W<a)] + ¥ [V Y +W‘I’<a>}}v
se T T
EGS. =S { Uy (UE+ VF) — Wi, (WHW)}.
The measurement tensors is:
\I,W
-1
Myita) = Pi(a) <—y 1 ) : (39)
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Fig. 1 Schematic of a beam undergoing finite deformation and csesgenal warping.
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Fig. 2 Velocities and aerodynamic forces within the blade profile.
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W kN

Fig. 3 Actuator distribution in an integrally actuated blade.
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Fig. 7 Blade energyl’ + U.
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Table1l. Energies in the active helicopter blade.

L _

Change of kinetic energy 7’ - / VIP+QOTH|dx
o L
. L _

Change of potential energyl — / (F 4+ FYT5 + (M + MA)T/%] dx

o L
L _

External power Pt = / VT4 QTm] dx
o L

Boundary power P** = V(L)"F" 4+ Q)" M" — F(0)"V® — M(0)7Q°

L
Estimated actuation powerP*!* =~ / [FATW + M AT&] dz
0
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Table2. Assumed spatial modes and time functions of the approxinaigables.

Vix,t)
Oz, 1)
(2, t)
K(z, 1)

[3 x 1]

Vi(z)oi(t)
Y (w)wn(t)
() gu(t)
Ra()ka(t)

[3 x 3][3 x 1]

o (z)au(t)
O (2)ai(t)
@ (x)ai(t)
O (z)au(t)

[3 x 12][12 x 1]

o) (z)
o) ()
o/ (z)
o7 ()

a(t)
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Table3. Free vibration solution (fvs) and natural modes (nm).

T
V) = ara {on o] (1) = el
T
Q{vs(x,t) = QP (x {/\zt Azt} Qr(z) = &$(x)Ty
T
W at) = @ {ondn] ) = 9T
T
K1z, t) = eRp(x { Nt Azt} RP™M(x) = OF(z)Ty
[3 x 1] [1 x1][8 x 2][2 x 1] [3 x 2] [3 x 12][12 x 2]
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Table4. Parameters of the helicopter blade.

Structure Parameters

Ry 0 O 0 0Sy3 T, 00
0 0 [R33 S31 00 0 0 _ﬂ-33

Rii = 6.4375- 1077, Rop = 4.9262-107%, Ryy = 4.4389-1075, S5 = 5.5420- 106
Sy = 1.8621 - 1074, Ty = 2.9086- 1072, Top = 2.5038 - 1072, T3 = 9.2640 - 104
(=6.9310-10"1, & = —6.9240-107%, & =0, i, = 6.4630 - 106
B3 = 3.7018 - 1074, 8y =0, L = 1.3970

Actuation Parameters

E; 0 0O +1 41 +1 +1 Fi; 0 O —141—-1+1
E=1]0 Eyp O +1—-1-1+1], F=1]10 Fypy O +14+1-1-1
0 0 Esg| |+1—-1+4+1-1 0 0 [Fsg| |+1+14+1+1

Eip =8.9562-107Y, [Egp = 2.7843-107%, [Es3 = 2.8536 - 1078,
Fi; = 3.8506-107%  Fg =1.9155-107%, [Fs3 =8.5769- 108

Aerodynamic Parameters

p=12, b= 5.3850- 1072, £ =0.5, Clo = 27
ClO = O, CdO = 001, CmO - O
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Table5. Natural frequencies of aeroelastic and structural models.

Mode Aeroelastic Model NATASHA: Aeroelastic Model StrucUtModel
frequency damping ratio frequency damping ratio frequency damping ratio

(rad/s) (=) (rad/s) (=) (rad/s) (=)

1°  bending 69.4195  4+3.26373-107'  69.4197  +3.26346-10""  75.9873  +3.08857 - 107'*
2" pending 196.286  +9.35641-107%  196.410  +9.34763 -1072 = 199.654  —2.17091-107'*
3" bending 375.224  +4.30848-107%  376.198  +4.29394-10"2  376.570  —1.20760 - 107 '°
4™ pending 609.286  +2.47827-107%  612.750  +2.46039 -1072  610.149  +2.74831-107'°
5% bending 890.557  +1.62854-107%  899.274  +1.60790-1072  891.379  44.23075-107'°

6" bending 1212.55 +1.16096-10"2  1230.60  +1.14019-10"2  1213.28  —7.26892-10"*

1% lead-lag 76.2633  +9.82787-10"*  76.2685  +9.81159-10"* = 76.2633  4+1.26594 - 10~ **
2"d  lead-lag  455.697  +1.20758-107%  456.288  +1.21496-10"*  455.700  +1.19983 - 1014

3% lead-lag 1158.70  +4.12947-107°  1162.77  +4.41446 -107°  1158.69  +1.50088 - 107 '°

1*¢  torsion  340.945 4+7.47685-10"2  340.972  +7.47336-10"2  346.387 —6.40185-10"**

2" torsion 1019.34  +1.90722-1072  1020.14  41.90621-10"2  1021.03  —5.40023-10~1°
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Table6. Assumed modes and time functions for the reduced order model

V(x,t)
Oz, t)
(2, t)
K(z,t)

[3 x 1]

VO(x) + @, (2)q.(t)

O(z) + @ (). (1)

V() + @7 (x)qr ()

KO (x) + @7 (x)qr(t)

[3 x 1]

[3 x 2][2 x 1]

@) (2)q;
O (2)q;
@ ()q)
o7 ()]

[3 x 12][12 x 1]

@, (x)
;! ()
@7 (x)
@7 (x)

[3x 2]

) (x)Ty,
O (x) Ty,
O/ ()T
O () Ty

[3 x 12][12 x 2]
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Table7. Natural frequencies of the controlled2érder model using the controller designed

on a 12" order model.

Mode Controlled Frequencies Aeroelastic Frequencies
frequency (rad/s) damping frequency (rad/s) damping

1*¢  bending 61.4702 +8.49722 - 1071 69.4195 +3.26373 - 1071

2" pending 166.798 +5.57226 - 107! 196.286 +9.35641 - 1072

3" bending 376.733 +1.87119- 1071 375.224 +4.30848 - 1072

1°*  lead-lag 68.5258 +9.22514 - 107* 76.2633 +9.82787-107*

2" |ead-lag 452.930 +5.77833 - 1071 455.697 +1.20758 - 10~

15 torsion 593.846 +6.24244 - 107! 340.945 +7.47685 - 1072
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