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Abstract— We introduce zonotope bundles for computing the ~ steps. Possible set representations for the overapprtgima

set of states reachable by a dynamicall system, also known &t from the class of polyhedra are polytopes [10], zonotopes
reachable set. Reachable set computations suffer from the curse [11], [12], oriented rectangular hulls [13], simplicies4]1

of dimensionality, which has been successfully addressedy b - . .
using zonotopes for linear systems. However, zonotopes anet and multidimensional intervals [15], [16].

closed under intersection leading to challenges when apphg Other representations, which are not from the class of
them to nonlinear and hybrid problems. We introduce zonotog  polyhedra, are ellipsoids [17], support functions [18] {@th
bundles as the intersection of zonotopes (without explidit  can represent any convex set), and level sets [19] (which
computing the intersection). Zonotope bundles are closednaer o, 1onresent any bounded set). Although ellipsoids offer a
intersection, while inheriting many positive properties d zono- .
topes. This is demonstrated for linear, nonlinear, and hybid ~ COMPAact representation of reachable sets, they suffer from
systems. A further property of zonotope bundles is that thei  not being closed under Minkowski addition and intersection
computation can be easily parallelized. The idea of computing with several instances of a set rep-
resentation, similar to the concept in this paper, is dbsdri

for ellipsoids in [20].

The reachable set for a dynamical system is the set of all We will first recallpolytopesandzonotopesind operations
states reached by all possible trajectories of a systertingfar on them in Sec. Il. Nextzonotope bundleare introduced
from a specified set of initial states, under the influence af Sec. Ill. It will be shown that no required operation on
uncertain inputs and parameters. Safety verification isafne zonotope bundles has complexity greater tidm?) with
the most widely used applications of reachability analigis respect to the system dimension The gained accuracy
demonstrating that no sets specified as unsafe can be reachggen computing with zonotope bundles compared to zono-
The avoidance of unsafe sets cannot be guaranteed fopes is demonstrated for linear systems (Sec. IV) when the
selected simulations, since the trajectory hitting an fenset initial set is not a zonotope. For nonlinear systems (Sec. V)
might not be found. Besides the safety verification problenit is shown that the capability of splitting zonotope bursdle
reachability analysis is also useful for robustness ama[§$  makes it possible to verify an evasive maneuver of a car while
abstraction of hybrid systems [2], invariant set compatati zonotopes and polytopes fail. For hybrid systems (Sec.tVI) i
[3], and state-bounding observers [4], [5]. is demonstrated that enclosures with guard sets can be much

Zonotopes are an efficient set representation for mamyiore accurately obtained with zonotope bundles compared
reachability problems, but suffer from the fact that theyto zonotopes, while polytopes are infeasible for dimension
are not closed under intersection (i.e. the intersection gfreater thant. Other advantages of zonotope bundles, such
zonotopes is not a zonotope in general), which is impoms parallelization, are summarized in Sec. VII.
tant for nonlinear and hybrid systems reachability analysi
This paper introduces zonotope bundles, which refer to the [I. POLYTOPES ANDZONOTOPES
intersection of a collection of zonotopes, making themetbs
under intersection.

Several representations have been used for reachable
An important class of set representations is the class
polyhedra. When the continuous dynamics is described
& € P,wherexr € R" andP is a bounded convex polyhedron

(i.e. a polytope), the reachable set can be exactly repbenpefinition 1 (H-Representation of a Polytope): A convex
by polyhedra, which also holds for linear hybrid automatgolytopeP is the intersection of; halfspaces{ () = {z
[6], [7]. For more complicated dynamics, such as linear tim@” e, z < d;, ¢; € R'*", d; € R}, such thatP = {z €
invariant (LTI) systems: = Az+v(t), wherex € R™, v(t) € R*|Ex <d, EeR™".deRI. 0
V c R", A € R"*", the reachable set cannot be exactly ) )
computed in general [8], but always without the wrapping’€finition 2 (V-Representation of a Polytope):Given  r
effect [9], where the wrapping effect is understood as th¥ertices v € R", P = cH(v",...,v(")) is a convex
propagation of overapproximations through successive tinP0lytope, whereCk() is the convex hull operator. O
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I. INTRODUCTION

We first recall the definitions of polytopes and zonotopes
s@&g then discuss the complexity of the required operations f
B?achability analysis of linear systems. The most genetal s

%presentation considered in this work are convex pol\gppe
or which two representations exist (Fig. 1).



. (1)
v —, H to [12] as:
O LZ :={Lz|z e 2} = (Le, LgM, ..., LgP),
Z1 @ 2o ::{a—i— b|a € Z,be Zg}

(a) V-repr. (b) H-repr. —(e1 +ea,9W, L g® RO ),
Fig. 1. Possible representations of a polytope. CH(Zl U LZl) ::{aa + (1 _ a)b|
a€ Z,beLZ,ael0,1]}
_ . C0.5(Ley, Lg™, ..., Lg™P,
Definition 3 (G-Representation of a Zonotope): - (Acl Ag(l) Ag(p)
Denoting the center by € R™ (to which a zonotope Ley, Lg, ..., Lg™),
is centrally symmetric) and thé" generators by)(Y) € R”, L=(I+L), L= (I -1L),
a zonotope is defined as P ‘
box(Z21) =[c1 — b, 24+ 0], 0= Z 19",
=1

P
Z:{xéR"|x:c+Zﬂig(i), —1§ﬂig1}. (1)
i=1 U where I is the identity matrix, the absolute valug'?|
is computed elementwise, angbx(Z,) is specified using
interval notation. The convex hull operation has to be over-
The definition can be interpreted as the Minkowski Sumapproximated since it results in a polytope in general. With
of a finite set of line segments = [—1,1] g". Figure 2 respect to the system dimension, the complexity is G(y)
illustrates how a zonotope is built step-by-step. The ordesr =z, ¢ 2,, box(Z,), andO(n?) for L Z;, CH(Z, U LZ,).
of a zonotope is defined as= Z. If the order is less than

one, the zonotope represents a set of lower dimension than Ill. ZONOTOPEBUNDLES
n (Fig. 2(a)) and a zonotope of order one is a parallelotope We define a zonotope bundle as the intersection of zono-
(Fig. 2(b)). Zonotopes of order greater than one create sdtgpes:

with an increasing number of facets and vertices (Fig. 2(C)befinition 4 (Zonotope Bundle): Given a finite set of

A zonotope is denoted in a concise way by the list of 'tsionotopesﬁf, a zonotope bundle i€ = {(°_, Zi|Z; €

- (1) () : . :
center and generator = (c,g*", ..., g'"). Z1}, i.e. the intersection of zonotopes;. Note that the
R intersection is not computed, but the zonotogesre stored
I3 in a list, which we write asz" = {Z;,..., Z,}". O
h h & h & We show that operations in (1) can be performed in
c an exact or overapproximate way on zonotope bundles by

separately performing them for each zonotope. Thus, the

computational cost is the one for zonotopes times the number
@cdl ) caly @l © colhdlbals of zonotopes in the bundle, so that the maximum complexity
of O(n?) is inherited. In addition, we provide an upper bound

Fig. 2. Construction of a zonotope by Minkowski addition ioEl segments. for the overapproximation of the Minkowski addition

Proposition 1 (Linear Transformation): The linear trans-

The representation of reachable sets does not only haygmation of a zonotope bundie 2", whereL has full rank
to be compact, but more importantly, relevant operationg performed by

have to be efficient with respect to the system dimension

n, which are: linear transformation, Minkowski addition, LZ"={L2z,...,LZ}".

box enclosure, and convex hull computation of linearly

transformed sets [9]. For polytopes, Minkowski additioml an When L does not have full rank, the computation is overap-
convex hull computation, which is denoted byC H (), are  proximative:L 27" C {L Z,,...,L Z,}". O

generally limited to problems with up té — 6 dimensions )¢ \we want to show thaf, N, 2 = (o, L2 for
' i=11 7 | li=1 v

[21], [22] and tend to run into numerical problems unles%hich it is sufficient to shown thak(A N B) = L AN L B
infinite precision arithmetic is used [23]. Unlike polytape when L has full rank:

zonotopes are numerically stable and operations for reacha

bility analysis have a maximum complexity 6#(n?). For reANBeoredands € B
Zr = (c1,9M,...,9gP), Zy = (e, hV,... h®), and <LrelLAandLx € LB
L € R™*™, the required operations are computed according sLre LANLB.

When L does not have full rank, it only holds thatife A

. . andz€e B— LxecLAandLx € L B. O
IMinkowski sum of two setsA @ B = {a + bla € A, b € B}.



Proposition 2 (Minkowski Addition): The Minkowski ad- The right column is equivalent t§2;, 1 24 . 2z 4
dition of a zonotope bundleZ” and a zonotopeg®?? is  Zadd}N, O

overapproximated by After combining Prop. 3 and Prop. 4 it follows that

FN@zulC{zi @zl | Z,gzWN O s
ﬂ(z @ Zodd) C ﬂ (Z; 1 Zadd) Prop4 gn 4 Zoadd
Proof: We want to show that(N;_, 2Z;) @ 2% < . i=1
Niy (2: @ 2°77), for which it is sufficient to shown that s that Prop. 2 is always better than facet lifting as is shown
(ANB)&C € (AaC)N(BaC). After definingz = y+c,  for an exemplary zonotope bundle in Fig. 3(b). Moreover,

wherey € AN B, c € C, we have: the Minkowski addition is computationally less expensive
ye ANB —ye Aandy € B for zonotopes @(n), see (1)), while face lifting requires
Sre(AaC)andz e (BaC) projections for each normal vecta®(n?)).
—ze(AaC)N(Ba (). N 4 Zadd
Itis shown thal ANB)®C # (AeC)N(B®C) by a scalar Nioy (Zi @ 2°77)

counter-exampled = [—1,—0.5], B = [0.5,1], C = [-1,1] (NiZy Zi) @ Zodd

so that(ANB)® C' is undefined whil§A@ C)N(B& C) =

[—0.5,0.5]. O “ zadd %
In order to present an upper bound on the overapprox
mation of the Minkowski addition procedure, an alternativ , A
overapproximation is considered by pushing the facetsef t : max(e; Z244) N
set outwards. This is first considered for zonotopes and then 1
for zonotope bundles: (a) Halfspace transla- (b) Comparison of Minkowski addition
tion. overapproximations.

Proposition 3 (Facet Lifting of Zonotopes): The addition
of a zonotope in H-representaticfi = {z|Ex < d} with
a zonotopez?®?® can be overapproximated by pushing the
facets ofZ outwards: Proposition 5 (Convex Hull Computation): The convex
2429 — (gBr < d}, di = d; + max(e; 2°9), hull of a zonotope bundlez™ and its mapL 2" is
overapproximated by

wheree; is thei'" row vector of E and Z @ Z°% C Z 4 cH(Z" UL 2") C {CH(Z,ULZ,),...,CH(Z,UL Z,)}".
Zadd' ] O

Proof: The Minkowski addition of a halfspack(”) = {z €
R"e;z < d;, e; € RY™" d; € R} is computed exactly
by pushing the dividing hyperplane outsidé{") @ 24 =  cH((AN B)UL (AN B)) C CH(AU L A) NCH(B U L B)).
H@) 4 zedd gsee Fig. 3(a). The independent application
results in an overapproximation: Definey € CH((AN B) U L (AN B)), then

Fig. 3. Minkowski addition of a zonotope bundle and a zonetop

Proof: It is sufficient to shown that

. Proof of Ja:yeca(ANB)® (1 -a)L(ANB)

i a Prop. 2 i a a Prop. 1
<ﬂH()>@Z “oc m(H()@de):ZTzdd' C (@¢dnaB)®(1—a)LAN(1—-a)L B)
Qi= , =1 ——— Prop. 2

—z =HOZed C (addo(l-—a)LA)N(aB®(1—a)LB)N O
- CCH(AUL A) CcH(BUL B)

Proposition 4 (Facet Lifting of Zonotope Bundles): The (aBo®(1-a)LA)N(aA® (1 -a)LB)
facet lifting of a zonotope bundl&’” by a zonotopez@d4 CCH(AUL A)NCH(BU L B).

is exactly obtained by

Proposition 6 (Box Enclosure): The enclosing box of a
gﬂTzadd:{ZlTzadd’.“’zs/l\zadd}ﬂ. D p ( ) g

zonotope bundleZ” is overapproximated by

Proof: The proof is straightforward by rewriting the expres- box(Z") C {box(Z;),...,box(Z)}". O
sions using the halfspace notation: . The results of the box enclosure are obvious and thus the
EMg < dm EMg <4 proof is skipped. The intersection of two zonotope bundles
E®z <d® i E@z <d® is trivially done by concatenating the list of zonotopes:
ﬂZ . = : : P00 FE = {Zanse- ZanasZBar - Zpan}". I

order to detect if a zonotope bundle intersects an unsafe set

E(S)x <d® B¢z <d the following proposition is applied:



Proposition 7 (Intersection Detection): A zonotope bun- Algorithm 1 ComputeRy, := R([ty, tx11]) fork=1... N
dle 2" intersects a seS if and only if each zonotope |nput: Reachable setsRh = RM[0,t4]), Ry =
intersectsS: 2'NS# 0« Vi=1...5: ZNnS#0. O R([0,t1]), System matrix4, time incr.r, time stepsV.

This result directly follows from the associativity of ime OUtPUt Ry for k=0...N

section and is useful from a computational point of view for Po = boz‘(RB)

safety verification: Once &; does not intersect an unsafe Ro =Rg ©Po

set, the check is completed, which is computationally ckeap " ]‘i: 1 . tho o

than first computing the polytope representationZ6f. Rp=e¢"Ry_1, Rp=e"Rj,
A property explored further in Sec. V-A is that two zono- Pr = th—l @ box(R},)

tope bundles representing the same set might suffer more or Ri =Ry © Py

less from overapproximations of operations, depending how end for

tight the individual zonotopes are enclosing the intefseact

of all zonotopes in the bundle.

IV. REACHABILITY ANALYSIS OF LINEAR SYSTEMS The. statg matrix4 is randomly gerjerated by uniformly
) sampling eigenvalues from a box in the complex plane
We will evaluate the performance of zonotope bundles f%ith real values in[—5,—0.2], and imaginary values in
. . . X bl . ’
linear systems given as= Ax-+Bu, whered € R, B € 1 5 5 Eigenvalues are chosen conjugate complex, unless

9 .
R™ m'.x(o) < R(0) C R", u(t) e U C Rm,‘ Rgachab|l|j[y the number of poles is uneven so that one is chosen real. The
analysis of linear systems does not require intersection mput matrix B is chosen as @& x n matrix whose entries

sets for which zonotope bundles are advante_lgeo_us over zongs uniformly distributed ifi—1, 1]. The set of inputé/ is a
topes. Nevertheless, zonotope bundles provide tightandzu hypercube centered at the origin with edge lengjth 0.1.

compared to zonotopes when the initial set is not given The initial set of states is randomly generated as a V-

as a zonotope. It will also be demonstrated that ;onotq(%%lytope with verticess() — d + 10 o), d — [2,... 2],
computations scale much better with the system dimension;; o ; . - .
' e R™ is a point uniformly distributed on a unit-

n compared to general polytopes. h (i . : L i
. ; 4 . ersphere, and®”) ¢ R is uniformly distributed within
The input setl/ is restricted to zonotopes. Typically, [OyZ] vl\?hereu — 1. The number of s;/mpled verticesa
bounds for inputs/disturbances are given as intervalsgoh e V¥|7‘1iC|11 equals the r'1umber for a hypercubeRi
| .

dimension (which is a special case of a zonotope), and The i ) is ch 1 A21-95 which i
not, efficient methods exist for the enclosure of other sets | € ime increment is chosen as= ||A%[[;"> which is

by boxes (zonotope of orde, parallelotopes (zonotope of motivated by the required enlargement of reachable sets to
order1), or zonotopes ' ensure enclosure for time intervals (see [26]). The number

of computed time stepsV € N is determined by the
A. Basic Procedure highestN fulfilling ||eA¥" ||y < 0.1]|e"||2, which indicates
Algorithm 1 shows the basic procedure for computingt significant decay of the initial state solution.
reachable sets for linear systems. The algorithm computesFor the computation with zonotope bundles, the initial
reachable sets of consecutive time interyalst,1], where set is enclosed by a box and a parallelotope using princi-
ty = kr, k € N is the time step and € R" is pal component analysis (see [13] or Sec. V-A), while for
the time increment. The superposition principle is used teonotope computations only the parallelotope is used. The
separately obtain the reachable set due to the homogeneenactness of the computation is measured by a normalized
and input solution, denoted bR" and R‘, respectively. volume® = V= (V is the volume) of the reachable sets,
The computation of the first time interval & ([0,¢;]) and making the results independent of
R'([0,1]) involves linear transformation, convex hull com-  After normalizing the time of each example from= 0
putation, and Minkowski addition, see e.g. [24]. By arraggi to ¢ = 1, the mean value of the relative performance index
the computations for further time intervals according th [9 ©% /67 and ©*/6" is plotted in Fig. 4, where the super-
as shown in algorithm 1, the wrapping effect is avoidedscripts refer to @anotopes, anotope hbindles, and plytopes.
The algorithm also obtains correct results when the systemcan be seen that the reachable sets are only marginally
is unstable. larger for zonotope computations and that the result is more
accurate for zonotope bundles. Since the initial statetisolu

B. Numerical Results - ) :
. Pecomes less dominant over time, the normalized volume
We compare the performance of computing reaChabr%tio tends tol

sets with zonotope bundles to computations using zonotope . . . _
he average computation times per time steare pre-

and polytopes by randomized examples. For dimensions . . !
n — {2,3}, 100 randomized systems are generated, Wh"gented in Table | showing that zonotope computations are

for n — 4 only the computational times are compare uch more efficient and scalable. There is a jump in the

since polytope computations often did not terminate due t%ompu';a:!on tw_ne frt(;]rmM;_l?tto Ig - ?‘t forhthetpolytopi ¢
numerical problends computation, since the oolbox often has to search for

alternative ways of computing the convex hull (do@alytical
2used tool: MPT toolbox [25] methodhas been initially set). Note that the computation time



when using two zonotopes in the bundle is less than doublée split parallelotopes are used for the splitting of zopet

since certain computations, such as the oné%@fand P

(see Alg. 1) do not involve the bundle. The computations
have been performed in MATLAB on an Intel i7 Processor

with 1.6 GHz and6 GB memory.

1.4

1.2~
o —et/er —o/er
1.15
® 11 \ . Toer/er o -—-er/er

1
0 05 1 0 05 1
normalized time normalized time

(a) Dimensionn = 2. (b) Dimensionn = 3.

Fig. 4. Mean ratios of normalized volumes when comparingloamized
zonotope bundle and zonotope computations with polytopepctations.

TABLE |
COMPUTATION TIMES FOR RANDOMIZED LINEAR SYSTEMS

dimensionn | 2 3 4 500 1000
7 in [s] | 0.0248 1.0423 14.836 — —
t?in[s] | 0.0010 0.0011 0.0011 0.5158  5.0902
t*%in[s] | 0.0018 0.0019 0.0020 0.6796  7.0438

V. REACHABILITY ANALYSIS OF NONLINEAR SYSTEMS

In this section, the performance of zonotope bundles i

demonstrated for nonlinear systenis = f(z,u), where
z(0) € R(0) C R, u(t) € U C R™. Recently, it has been

demonstrated that reachability techniques developedrfor | s
ear systems can be efficiently extended to nonlinear syster'g?s
by on-the-fly linearization [14], [27]. Overapproximation
of the result is ensured by adding the set of linearization
errors as an additional uncertain input. For many nonlinear
problems, it is required to split the reachable set when the
set of linearization errors is large [27]. Since zonotopegox
are not closed under intersection (equivalent to not beingt
-~ . art
closed under splitting), they have to be overapproximaged t{
i - he f
parallelotopes (zonotopes of order 1) in order to obtaiit spl

sets in G-representation.

A. Splitting and Enclosing Zonotope Bundles

A zonotope, and thus also a zonotope bundle can be sp(flt

by first overapproximating it by a parallelotople, which
is obtained by defining the directions; which span the
parallelotope as columns in a matix= [Aq, ..., \,]:

U= (c,w®, .. w™) = Abox(A™1 2. 2

One of the column vectors; has to be in direction of

bundles:

2 =2"NV,, 2 =2"NV,.

Note that the number of zonotopes in the bundle is increased
by one. In contrast to zonotopes, the result of the split is
exact, i.e.2{' N2y = 0 and 2" U 25 = 2", no
matter how the other column vectors af besides thej'”

one are chosen and how tighthox() in (2) is obtained.
However, subsequent operations such as Minkowski addition
with zonotopes adds a larger error whéns chosen badly

or box() returns a large overapproximation. Heuristics for
computations ofA are addressed next:

a) Box method (box):This method encloses the set
by a box, such tha\ = I and I is the identity matrix.
Good results are obtained when the reachable set is not
stretched out in certain directions, while being compact in
others. This heuristics is especially useful when usingisgv
enclosing zonotopes since there are no numerical problems
when computingA—! such that a worst case enclosure is
guaranteed.

b) PCA method (pca)The method returns directions
with the greatest variance of the vertices &f" by a
principal component analysis (see [13]) and thus requires
vertex computation in contrast to the other heuristics.

i c) Generator filtering (fil): This method is based on
&scarding generators of the zonotope bundle, such thgt onl
n generators remain fok. First, short generators are sorted
out, next generator combinations are sorted out that do not
an a large parallelogram, i.e. that are too much aligned.
om this subset, the final generators are picked providing
the smallest volume ofv. This technique is equivalent to
method Cin [28], except that the union of generators of all
zonotopes of the bundle is used.

d) Flow method (flow):This method is similar to the
method, but incorporates the flow of the dynamics.
ing fromA = I, the column that is most aligned with
low directionf, is replaced byf.

The presented methods are evaluated later in Sec. VI-B.
In order to decrease overapproximative effects of oparatio
(see Prop. 2-6) after the split, one can compute the en@osur
f a zonotope bundle asox(Z") = box( (N, Z;) in
contrast to Prop. 6. This requires the conversion of the
zonotopesZ; into a H-representation according to [28]
which is linear in the number of generated halfspaces, but
there might be up t@(,?,) halfspaces. Thus, it is often
required to reduce the number of generators of edgln
an overapproximative way using techniques from [11], [12],
or the previously described parallelotope enclosureschvhi

the normal vector of the dividing hyperplane, such that thean be combined such that e, C wb** N ¥»<e, Finally,

splitting of the j*" generatorw”) = v ); (v € R) results
into two parallelotopedr, ¥s:

U =(c— %w(-j),w(l), cowlTY, %w(-j),w(-jﬂ), Cw™)

Uy = (c+ %w(-j),w(l), cowlTY, %w(-j),w(-jﬂ), Cw™)

the enclosing box of the H-representation can be obtained
via linear programming.
B. Numerical Example

The effectiveness of the zonotope bundle computations is
shown by an automated evasion maneuver of a car. The car



TABLE Il

is approaching a multi-lane crossing equipped with CICAS VEHICLE PARAMETERS PARTIALLY TAKEN OUT OF[32].

(Cooperative Intersection Collision Avoidance Systeng][2
where a standing vehicle is in its lane; see Fig. 5. The Initiaf symb. T m 7 ;1 crer B ki ko
velocity is high enough that an evasive maneuver is morg value | 1573 2873 1.1 1.58 80e3 0.7 2 0.5
effective compared to a braking maneuver [30]. unit | kg kgm? _m__m Nrad — — —

evasion path

J | —

________ @_ L L Sec. V-A by choosing\ = I which is effective since the
—A reachable set is not stretched out in certain directiong. Th
““““““““ - box enclosure is computed using Prop. 6 instead of the tighte
r q. a»~ version discussed in Sec. V-A. The nonlinear effects are

evading car standing car AR . . T
dominated by the change of the velocity, which is more
Fig. 5. Evasion maneuver. dominant for small velocities since,, i3 are obtained by

dividing by the velocity or its square. Fat; — 0 the model
The vehicle model consists of the lateral dynamics, theecomes singular, such that the verification is stopped for
longitudinal dynamics, and a geometric model translating, < 2 [m/s].
the heading and the velocity of the vehicle to positions on This nonlinear effect towards smaller velocities causes
the road. The lateral dynamics is modeled by a so-callesplitting, which results into a parallel computation of cka
bicycle model, which neglects the roll and pitch dynamicsable sets shown in Fig. 7. When using zonotopes, the number
see [31]. The automated steering is performed by firstf required splits explodes such that the verification faith
generating a reference trajectary(t) of the lateral positions zonotopes, while it remains stable using zonotope buntiles.
(perpendicular to the road direction) and the orientationlso fails for polytopes since certain operations such as th
U,(t) considering the maximal available tire friction. TheMinkowski addition are infeasible i dimensions.
steering controller uses the measured lateral positionand The system is considered as safe when the vehicle cen-
orientation¥(¢) to update the steering inptit= &, (¥4(t) —  ter (rs,x¢) does not hit the forbidden region indicated in
U(t)) + ka(ya(t) — y(t)). The position and orientation is Fig. 6(c) which would cause a collision with the standing
obtained by fusing an accurate differential GPS signal fromehicle. In addition, the vehicle is not allowed to cross the
the CICAS-equipped intersection with inertial accelenasi lane boundary of the neighboring lane. Due to the reduced
from the vehicle. The state vector is= [3, ¥, ¥, v, z,y], splitting, the computation time up tb= 3.6 s (when the
where all variables are measured at the center of niags: reachable set starts exploding for the zonotope compujatio
the side-slip angle is the yaw angleW is the yaw ratep  is 32.8 s using zonotope bundles, which is less thanittie9
is the velocity,z andy are thez- and y-position: s required for zonotopes. The example was implemented
in MATLAB and executed on an Intel i7 Processor with

. 1 x3 1.6 GHz and6 GB memory.
i =—— (,u(cr +ep)xr + pleply — eply) = + maszy
s T4 VI. REACHABILITY ANALYSIS OF HYBRID SYSTEMS
— e (k1 (Ya — x2) + ko (ya — xG))) The reachability analysis of hybrid systems requires in-
=5 tersection with so-called guard sets. We will show that
To =23 this intersection can be computed much more accurately
) 1 5 9\ T3 with zonotope bundles compared to zonotopes, while the
T3 =7 (M(Crlr —cplp)ry — plerly + Cflf)x_4 computation with polytopes typically becomes infeasiloe f
dimensions greater thah
+peyly (kl(qjd_xz)‘Lk?(yd_xG))) Hybrid systems are a combination of continuous and
=5 discrete dynamics, where to each discrete state an intarian

T4 =ay region is assigned in which a continuous dynamics is valid.

Once the continuous state is within a guard set, the discrete
state may change according to a transition relation between
discrete states, and has to change if it would leave the

The parameters of this model are listed in Table Il, the sétvariant. An additional jump of continuous state variable
of initial states isR(0) = [—0.02,0.02] x [-0.05,0.05] x  may be specified for the transition. The reachable set of a
[—0.2,0.2] x [19.8,20.2] x [-0.2,0.2] x [-0.2,0.2], and hybrid system is exemplarily illustrated in Fig. 8; a formal
the set of disturbances is, € [-0.1,0.1]. The path of definition of the considered hybrid dynamics is given in [28]
the maneuver consists of two arcs followed by a brakin% )
maneuver (see Fig. 5). . Basic Procedure

The different projections of the reachable set are shown We restrict ourselves to guard sets specified by polytopes,
in Fig. 6 when using zonotopes or zonotope bundles. Thehich can also be used to overapproximate arbitrarily stiape
splitting of the reachable sets is performed as presented guard sets. When representing reachable sets by zonotope

Z5 =cos(z1 + T2)24

T =sin(xy + x2)x4
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> 0 2 4 6 8 —os bunde
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X X3 X1 X
() Projection ontar, 2. (b) Projection ontazs, z4. (a) Guard intersection. (b) Enclosure of vertices.
4r Fig. 9. Reachable set intersection with a guard set by a apedbundle.
3k
o 2f the initial set and the continuous dynamics. The reachable
1 Unsafe set set is computed until no further set intersects the guard set
ol The continuous dynamics is chosen as in Sec. IV-B and
: ‘ ‘ ‘ ‘ ‘ the guard set is a bok,1 + €] x [—1,{] x ... x [-1,1],
-10 0 10 20 30 40 50 60

X wheree is uniformly distributed within[0, 1] and ! = 103,
see Fig. 9(a). The initial set is a zonotope with an order
uniformly distributed within[1, 3], where the generators are
Fig. 6. Reachable set of the lane changing maneuver. Rdackets randomly generated as the vertices in Sec. IV-B with-

are light gray when computing with zonotope bundles and dasly when 1/0, and the center is uniformly distributed with[d, 8] x
computing with zonotopes. Black lines show exemplary ttajges. [—4,4] x ... x |4, 4], forcing an intersection with the guard
set before converging to the origin. The hypercube enajpsin

(c) Projection ontars, 6.

2 ! the uncertain input has maximum edge lengtk 0.01.
g 50 ' | ——zonotope bundles The enclosure of vertices by a zonotope bundle has
g ; -~ -zonotopes been performed using the metholdsx pca fil, and flow
S5 4 as described in Sec. V-A. The method combining these
0 2 4 enclosures using a zonotope bundle is denoteddmyh and
time tin [s] . -
the enclosure by a polytope is denotedgmly. In addition,
Fig. 7. Number of sets computed in parallel due to the spijtti a randomized enclosure methoand is evaluated, which

creates100 randomly generated parallelotopes by random-

izing A (see (2)). Each column of is a vector uniformly
bundles, one has to convert them to a H-representatiofistributed on a unit hypersphere, and the enclosure with
(which can be efficiently done by several parallelotop¢he smallest volume is picked. The relative performance
enclosures as presented in Sec. V-A) for intersection witimdices @M¢"°Y/@P°Y (method = {box,...,poly}) along
guard sets using a standard toolbok order to continue with the computation times for the enclosure are presented
the computation with a G-representation, the vertices ef thn Table Ill. The computations are performed in MATLAB
intersection are enclosed by parallelotopes as describbeddn an Intel i7 Processor with.6 GHz and6 GB memory.
(2), except that the box of vertices instead of zonotopes It can be seen that the relative performance for zonotope

computed. These steps are illustrated in Fig. 9. bundles (methodtomB) is only marginally increasing with
) n, while the computation time is almost constant, whereas
B. Numerical Examples the computation fompoly increases dramatically. Thus, for

In analogy to linear systems, we randomly generate hybrid > 4 only the computation time can be evaluated since
reachability problems consisting of a single guard sethwit ©P°Y s infeasible.
out loss of generality we fix the guard set while randomizing

TABLE Il
3used tool: MPT toolbox [25] ENCLOSURE OF INTERSECTED REACHABLE SETS
n [ box pca fil flow rand comb poly
unsafe set reachable set guard sets relative performance indeg@™Method/gpoly

1.362 1.155 2.068 2.186 1.112 1.018 1
1.803 1.339 4.686 3.544 1.945 1.064 1
2.246 1.486 8.981 5.628 3.487 1.135 1
omputation times in [ms] for vertex enclosure

0.385 0.524 0.731 1.214 92.27 2.854 7.778
0.359 0.520 0.698 1.240 90.85 2.817 30.42
0.400 1.610 0.813 1.255 96.81 4.078 2154
11.38 31.37 15.64 16.17 1580 74.57 —

invariant

initial set

mI guard sets
z1 discr. statez; discr. statezs

Fig. 8. lllustration of the reachable set of a hybrid autamat

Q0 = WOk W N




VII. CONCLUSIONS

This paper introduces zonotope bundles, defined as thg)
intersection of a set of zonotopes, which in contrast to zono
topes are closed under intersection. Operations on zoeoto[?g]
bundles for reachability analysis are computed storingta li
of zonotopes and without performing any intersection. afe
verification can then be performed by checking for eac
zonotope in the bundle if a set of unsafe states is hit. Sin
all computations are performed on individual zonotopes,
the computational effort is simply the effort of zonotope[15]
computation times the number of zonotopes in the bundle.

Since all computations are separately performed on zong$]
topes, it is straightforward to parallelize the presentpdro
ations. Furthermore, it has been shown that zonotope bundle
computations scale better with the system dimension théty]
polytopes, while improving the accuracy compared to single
zonotope representations for linear, nonlinear, and dybrj;g)
systems. In the nonlinear example, only zonotope bundles

could successfully verify the safety. Another propertyhiatt
one can tune the accuracy by the number of zonotopesin t

84]

he'

bundle. Measuring the improvement compared to zonotopes
in higher dimensions is infeasible for many measures su

introducing a fair and scalable measure is future work.

as the volume of sets or their Hausdorff distance, such th t]

[21]
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