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Abstract— The verification of evasive maneuvers for au-
tonomous vehicles driving with constant velocity is consid-
ered. Modeling uncertainties, uncertain measurements, and
disturbances can cause substantial deviations from an initially
planned evasive maneuver. From this follows that the maneuver,
which is safe under perfect conditions, might become unsafe. In
this work, the possible set of deviations is computed with meth-
ods from reachability analysis, which allows to verify evasive
maneuvers under consideration of the mentioned uncertainties.
Since the presented approach has a short response time, it
can be applied for real time safety decisions. The methods are
presented for a numerical example where two autonomous cars
plan a coordinated evasive maneuver in order to prevent a
collision with a wrong-way driver.

I. I NTRODUCTION

Recently, numerous autonomous vehicle projects have
been realized, among them the projectCognitive Automobiles
[1] in which this work has been partly carried out. It is
out of question that safety is of paramount importance
for autonomous vehicles, since their development should
reduce the number of road accidents. For slow moving
autonomous vehicles, it is sufficient to check if the set of
occupied positions does not intersect any obstacle when the
planned trajectory is almost perfectly followed [2]. However,
one cannot assume that a planned trajectory is perfectly
followed for evasive maneuvers due to e.g. tire slip, uncertain
parameters, uncertain initial states, disturbances and soon. In
order to compute the reachable positions under the mentioned
uncertainties, the reachable set of other states such as e.g.
velocity, orientation, and side slip angle has to be computed
as well. The online safety verification of planned trajectories
using reachability analysis is the subject of this paper.

The literature on reachability analysis applied to au-
tonomous vehicles and car-like robots is rather limited.
Reachable sets of obstacles with a velocity bound can be
described by circles around the initial position and are often
used for path planning in dynamic environments, see e.g. [3].
Circles can also represent the reachable sets of the slightly
more complicated maximum acceleration model [4]. An ap-
proximate solution of reachable positions of robots has been
used in [5] for a multi robot system. For the lateral control
of vehicles, reachable sets of the deviation along a planned
path have been investigated in [6]. However, in that work,
the reachable set is obtained from worst case simulations,
but no proof is given which guarantees the enclosure of
all reachable states by the worst case simulations. Provable
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results using simulations can only be obtained with special
methods developed in e.g. [7]–[9].

There is more literature on safety verification of trans-
portation systems which is not necessarily performed by
reachability analysis. There is work on verification algo-
rithms for platooning of road vehicles [10], [11], air traffic
safety [12]–[14] and rail traffic safety [15], [16]. However, a
verification algorithm for evasive maneuvers of road vehicles
is novel to the best knowledge of the authors. An overview
of reachable set algorithms for different problem classes can
be found in [17].

II. CONTRIBUTION AND MOTIVATION

The contribution of this work is to prove the safety of
evasive maneuvers with constant velocity for autonomous
vehicles before the maneuver is executed. This is done by
considering the set of tracking errors for a planned trajectory
into the collision detection. It is assumed that the trajectory
of evasive maneuvers is provided from a planner which is
not subject of this work.

The tracking errors are mainly caused by measurement
uncertainties, uncertain system parameters, and disturbances.
In order to prove the safety, the set of positions possibly
occupied by each vehicle under the mentioned uncertainties
has to be obtained. This set is also referred to as the
occupancy setfrom now on. If the occupancy sets of all
traffic participants do not intersect for a predefined time
horizon t 2 [0; tf ℄, the maneuver of each traffic participant
is safe for this time horizon. In order to extend the safety
verification for an infinite time horizon (8t > 0), possible
follow-up maneuvers in which all traffic participants come
to a standstill have to be planned. Since the vehicles are not
moving anymore after a finite time horizon, this trick allows
to verify infinite time horizons if the original and the follow-
up maneuver (which is not executed) are collision-free.

If the planned trajectory is unsafe, the trajectory planner
has to replan the trajectory or execute the trajectory with the
least intersection of occupancy sets.

A. Known Versus Unknown Plans of Other Vehicles

Next, it is motivated why the concept of occupancy sets is
only reasonable when the plan of other traffic participants is
known, e.g. broadcast via wireless communication. Thereto,
a scenario is considered in which two vehicles pass each
other on a straight road, see Fig. 1. Assuming that the
maximum force applicable between tires and road is isotropic
(independent of the direction) according toKamm’s circle,
the reachable set of a vehicle at timet can be described



by a circle [4]. Since the circles overlap already after a
prediction horizon of only one second (v0 = 20 m/s for both
vehicles) an everyday situation has to be classified as unsafe,
see Fig. 1. However, when the vehicles broadcast their plans
of driving straight, the situation is verified as safe, unless the
tracking errors are abnormally large.

The presented scenario demonstrates that if no maneuver
plans are exchanged, one has to work with probabilistic
methods. Those methods would compute a low crash proba-
bility for the presented scenario, which would be a sufficient
condition for continuing the plan of following the straight
road. Probabilistic approaches for the safety analysis of
traffic scenes have been presented in e.g. [18], [19].

Unknown plan:

Known plan:

Fig. 1. Known versus unknown plans in a straight road scenario.

B. Braking Versus Evasive Maneuvers

Finally, it is motivated why this work focuses on evasive
maneuvers since the autonomous vehicle might also plan a
braking maneuver. This is justified since the computation
of reachable sets for braking maneuvers is trivial, as shown
next.

The reachable set of a braking maneuver is influenced by
the deceleration which is uncertain withinade
 2 [ade
; ade
℄
due to varying tire friction, whereade
 is the lower andade
 is the upper limit. The initial positions0 2 [s0; s0℄ and
velocity v0 2 [v0; v0℄ are also uncertain due to measurement
uncertainties. Clearly, after the integration of the acceleration
and the velocity, the limits of reachable positionss(t) are:s(t) = s0 + v0t+ 12ade
t2; s(t) = s0 + v0t+ 12ade
t2:
After additionally considering the size of the vehicle body,
the occupancy set is obtained.

Next, the model for the lateral vehicle dynamics is intro-
duced which allows to compute the reachable set of more
complex evasive maneuvers.

III. SYSTEM MODEL

One of the most widely used models for road vehicles is
the bicycle model whose name origins from the fact that the
two wheels of each axle are lumped into one wheel located
at the middle of the vehicle. This is also depicted in Fig.
2, wherexCG is the center of gravity,lr, lf , dT , dS are
the distances from the center of gravity to the axles, the
front, and the tail sensor. The sensors measure the distances�yT and �yS to the reference trajectory and are chosen

according to the control concept introduced subsequently.
The reference trajectory is modeled as piecewise circular arcs
with curvature�ref . The steering angle is denoted byÆf and
the velocity byv. The state space model of the bicycle model
is according to [20]:2664� _yS��yS� _yT��yT3775 = 2664 0 1 0 0a21 a22 �a21 a240 0 0 1a41 a42 �a41 a443775| {z }A

2664�yS� _yS�yT� _yT3775 (1)

+2664 0 0b2 �v20 h4 vb4 �v23775| {z }B � Æf�ref�
wherea21 = h2M h4 � dSh1I	h4 ; a22 = h1 � dT h2M v h4 + dS(dT h1 � h3)I	 v h4 ;a41 = h2M h4 + dT h1I	h4 ; a42 = h1 � dT h2M v h4 � dT (dT h1 � h3)I	 v h4 ;b2 = � 
f � 1M + dS lfI	 � ; a24 = �h1 + dSh2M v h4 + dS(dSh1 + h3)I	 v h4 ;b4 = � 
f � 1M � dT lfI	 � ; a44 = �h1 + dSh2M v h4 + dT (dSh1 + h3)I	 v h4 ;
for which the auxiliary variablesh1 = �(
rlr � 
f lf ); h2 = �(
f + 
r);h3 = �(
rl2r + 
f l2f ); h4 = dS + dT ;
have been used.

For the control of vehicles along planned trajectories, the
controller presented in [20] is used which has been verified
experimentally within the California PATH program. The
controller is a state feedback controllerÆf = �kT x (x: state,Æf : steering input,k: controller gain), wherekT = �0:510 0:087 �0:280 �0:024� : (2)

The parameters of the considered car are listed in Tab. I. It is
remarked that the same control approach has been applied in
another study on steering controllers [21]. Other works that
have developed steering controllers and evasive maneuvers
can be found in [22]–[24].

For the evading scenario considered later, the initial veloc-
ity of the vehicle is uncertain within an interval such that the
elementsa22, a42, a24 anda44 of the system matrixA are
uncertain within an interval. Matrices whose elements can
take values within intervals are also referred to asinterval
matrices. From now on, the set of system and input matrices
is denoted byA = [A;A℄ andB = [B;B℄, respectively. The
elements ofA andB which are not uncertain have the same
left and right limit. The interval matrices allow to describe
the bicycle model in (1) together with the controller in (2)
by the differential inclusion_x 2 Ax+ Bu; (3)

where x is the state vector andu the input vector. The
form of writing the system equations as a linear differential



inclusion allows to apply the proposed reachability algorithm
as presented in the next section. If the velocity was modeled
as another state instead of an uncertain parameter, the above
model would become nonlinear and thus more complicated
to analyze. There are methods for the reachability analysis
of nonlinear systems, but they would not yet fulfill the tight
restrictions on the allowed computational time [25]. This
problem is subject of future work.

TABLE I

VEHICLE PARAMETERS.M I	 lf lr1573 kg 2873 kg m2 1:1 m 1:58 mdS dT 
f = 
r �1:96 m 2:49 m 8000 N/rad 1dT dSlr lfv Æf�yT �ySxCGtail
sensor

front
sensor

Fig. 2. Bicycle model.

IV. REACHABILITY ANALYSIS

For the dynamic model (3) described in the previous sec-
tion, the set of reachable states is computed. The computation
considers uncertain initial statesx(0) 2 X0, uncertain inputsu(t) 2 U , and uncertain parameters, where the latter is
considered by the interval matricesA andB. The exact set
of reachable statesRe(r) for a time t = r can be formally
written as:Re(r) = �x(r)����x(t) = Z t0 [Ax(�) +Bu(�)℄ d�;x(0) 2 X0; A 2 A; B 2 B; 8t : u(t) 2 U�:
However, the reachable set of linear systems can be exactly
computed only for time invariant linear systems whose eigen-
values are rational or purely imaginary [26]. Since this is not
the case for the bicycle model, the reachable setR(r) has
to be over-approximated, so thatR(r) � Re(r). The over-
approximated set for a time intervalt 2 [0; r℄ is defined as
the union of allR(t) for t 2 [0; r℄: R([0; r℄) = St2[0;r℄R(t).
A. Overview of Reachable Set Computations

This section deals with the computation of reachable
sets for linear continuous systems with uncertain system
and input matrices as in (3). In order to focus on the
application of reachability analysis to evasive maneuvers,
only the most important aspects of reachability analysis are
treated. Many approaches, e.g. [27]–[30] developed for the

over-approximative computation of reachable sets of linear
systems use the following three basic steps:

1) computation of the reachable setR̂ without input at the
point in timetk := k �r, wherer is the time increment,

2) generation of the convex hull of the time point solu-
tions attk�1 and tk,

3) enlargement of the convex hull to ensure enclosure
of all trajectories for the current time intervalt 2[tk�1; tk℄ under all possible inputs.

These steps are also illustrated in Fig. 3. Note thatR̂ denotes
the reachable set of the homogeneous solution (no input),
while R denotes the overall reachable set consisting of the
homogeneous and the inhomogeneous solution. The separate
computation of the homogeneous and the inhomogeneous
solution is possible due to the superposition principle of
linear systems. Finally, the reachable set for the complete
time interval is obtained by the union of the intermediate
time intervals:R([0; tf ℄) = tf=r[k=1 R([tk�1; tk℄):

R̂(tk�1 )̂R(tk)
Convex
Hull ofR̂(tk�1),R̂(tk)R([tk�1; tk ℄)

➀ ➁ ➂

enlargement

Fig. 3. Main steps for the computation of reachable sets.

B. Algorithmic Formulation

The first step for the computation of the reachable set in
Fig. 3 is the computation of the reachable set at the next time
steptk. It is well known that the homogeneous solution of a
linear system isx(tk) = eArx(tk�1), whereA is the system
matrix andr the time increment. Thus, the reachable set of
the homogeneous solution isR̂(tk) = eArR̂(tk�1): (4)

SinceeAr shifts the time byr, the reachable set for a time
interval can be updated in the same manner:R̂([tk; tk+1℄) =eArR̂([tk�1; tk℄). However, the system matrixA 2 A is
uncertain in this work which requires to compute the set of
exponential matriceseA r = feArjA 2 Ag. This procedure
and the computation of reachable sets for a time intervalR̂([0; r℄) is explained in detail in [30] for the interested
reader.

As the superposition principle is applicable to linear
systems, the reachable set of the inhomogeneous solution
denoted by�R(t) is computed separately as shown in [30].
Combining the homogeneous solution with the inhomoge-
neous solution and applying the time shift from (4) yields
the main algorithm for the computation of the reachable set:



R̂([tk ; tk+1℄) = eA rR̂([tk�1; tk℄); (hom. sol.)�R([tk ; tk+1℄) = eA r �R([tk�1; tk℄) + �R([0; r℄); (inhom. sol.)R([tk; tk+1℄) = R̂([tk; tk+1℄) + �R([tk; tk+1℄) (overall sol.):
Note that the addition of two setŝR([tk; tk+1℄) and�R([tk; tk+1℄) is also called Minkowski addition where each

element of one set is added to each other value of the other
set:A + B = fa+ bja 2 A; b 2 Bg. The algorithm can be
simplified toR([tk; tk+1℄) = eA rR([tk�1; tk℄) + �R([0; r℄): (5)

The set of reachable states is used in the next section
to obtain the set of occupied positions of the considered
vehicles.

V. SET OF OCCUPIED POSITIONS

This section deals with the computation of the occupancy
set, i.e. the set covering all areas occupied by the vehicle
body for time intervals[tk�1; tk℄. The set of vehicle centers
is simply obtained from the velocity uncertaintyv 2 [v; v℄
and the initial positions0 2 [s0; s0℄:s�([tk�1; tk℄) = s0 + v tk�1; s�([tk�1; tk℄) = s0 + v tk:
Sinces�(t) refers only to the position of the vehicle center,
the lengthl of the vehicle has to be taken into account:s = s� � 0:5 l ands = s� + 0:5 l.

It remains to consider the set of deviations from the
reference trajectory. In order to obtain a simple geometry of
the occupancy set, it is represented by a trapezoid, see Fig.
4. The directions of the parallel sides are determined by the
straight line from the positions([tk�1; tk℄) to s([tk�1; tk℄).
The directions of the non-parallel lines are given by the
normal vectors ins([tk�1; tk℄) ands([tk�1; tk℄). The parallel
sides are pushed outwards due to:� The curvature of the arc segment. An arc with length�s([tk�1; tk℄) = s([tk�1; tk℄) � s([tk�1; tk℄) covers

an angle range�� = �s �ref , where �ref is the
curvature. From elementary geometry it follows that the
corresponding parallel side of the trapezoid have to be
pushed outside byh = 1�ref (1�
os(0:5�s �ref)), wherelim�ref!0 h = 0.� The intervals of deviation �yS([tk�1; tk℄) and�yT ([tk�1; tk℄) from the reference trajectory which
is obtained from the reachable set of the controlled
bicycle model (3).
In order to retain the trapezoidal representation of the
occupancy set, the parallel sets have to be pushed
outwards by the extreme values of�yS and �yT .
The maximum deviation interval�y 2 [�y;�y℄ is:�y = min(�yS ;�yT ) and�y = max(�yS ;�yT ).� The width w of the vehicle.

The values contributing to the enlargement of the occupancy
set are also marked in Fig. 4.

lw
�y �y 0:5 l0:5 l 0:5w0:5whs� s�s

s
�� perpendicular

reference
trajectory

occupancy set

y = min(�yS ;�yT )y = max(�yS ;�yT )h = 1�ref (1 � 
os(0:5��))
Fig. 4. Occupancy set of the vehicle.

VI. N UMERICAL EXAMPLE

The numerical example considers a situation in which
a wrong-way driver threatens two autonomously driving
vehicles on a road with three lanes. In order to minimize
the risk of a crash with the wrong-way driver, both vehiclesA andB plan a coordinated lane change maneuver as shown
in Fig. 7. It is assumed that the wrong-way driver does
not change lanes so that the task is to clear the leftmost
lane as fast as possible. Since the verification is limited
to communicating vehicles, the wrong-way driver is not
considered in the verification.

In this scenario, both evading vehicles have parameters
as listed in Tab. I and the controller parameters from (2).
The reference trajectory of both vehicles consists of two
arcs. The curvature values�ref are chosen such that the
nominal lateral accelerations along the reference trajectory
are aAlat = 0:4 g, aBlat = 0:3 g for vehicleA andB, whereg is the gravitational acceleration. The velocity of vehicleA is vA = 20 � 1m/s andvB = 24 � 1m/s for vehicleB. After combining the controller with the bicycle model of
the vehicle and after insertion of the vehicle and controller
parameters, the dynamic model for vehicle A is:24� _yS��yS� _yT��yT35 2 24 0 1 0 0�3:96 [�1:40;�1:36℄ 1:41 [0:27; 0:33℄0 0 0 14:33 [0:14; 0:18℄ �3:75 [0:02; 0:08℄3524�yS� _yS�yT� _yT35+24 0[�441;�361℄[84:6; 93:5℄[�441;�361℄35 �ref

The model of vehicle B is similar but differs due to
the different velocity interval. The initial states are within[�0:2; 0:2℄m for �yS , �yT and within [�0:2; 0:2℄m/s for� _yS and � _yT for both vehicles. The reachable set is
computed for a time step size of0:04 sec.

A. Reachable Set

The reachable set of vehicle A for the first arc of the
reference trajectory together with exemplary trajectories are
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Fig. 6. Reachable set for the movement along the second arc. The curves
represent exemplary trajectories starting in the set of initial states.

plotted in Fig. 5. It can be observed that no trajectory leaves
the reachable set and that the reachable set is not overly
conservative, i.e. the trajectories are not far away from the
boundaries of the reachable set. The result for vehicle B is
similar and thus not shown.

For the second arc, the input�ref is changed. Due to
the uncertain vehicle velocityv, the time point for the
change of �ref is also uncertain within[tswit
h; tswit
h℄.
The computed over-approximative set of initial states for
the computation along the second arc is:X2nd ar
0 =R1st ar
([tswit
h; tswit
h℄). The union of reachable sets for
the time interval[tswit
h; tswit
h℄ is over-approximated by an
axis-aligned box and serves as the new initial set for the
reachability computations along the second arc, see Fig. 6.
For the remaining time intervals, zonotopes are used as a
representation of the reachable set [30]. The reachable set
together with randomly generated trajectories of vehicle A
for the second arc are shown in Fig. 6.

Note that the evasive trajectory can be composed by more
than two arcs so that other paths such as clothoids can be
approximated. In order to obtain an over-approximation of
the reachability computations for more complicated paths,
one can additionally specify the curvature�ref to be uncertain
within an interval for each arc segment.

B. Occupancy Set

In order to determine if a crash can occur, the reachable
set of the states�yS , � _yS , �yT and� _yT is used to obtain
the occupancy set for each time interval as presented in Sec.

V. The resulting occupancy sets for the described scenario
are found in Fig. 7(a). In order to efficiently check if the
occupancy sets of vehicleA andB intersect for any time
interval, candidates for possible intersection are searched
by over-approximating the occupancy set with bounding
boxes and checking for their intersection. For all intersection
candidates, it is finally checked if the trapezoids of the
occupancy sets intersect.

The evasive maneuver in Fig. 7(a) is verified as safe.
However, for a lateral acceleration ofaAlat = 0:6 g, the
evasive maneuver cannot be verified collision-free as shown
in Fig. 7(b). It has also been checked if any of the vehicles
leaves the road boundary.

The computation time for the reachable set is0:34 sec for
one vehicle on an AMD Athlon64 3700+ processor (single
core) in Matlab. This computational time is deterministic and
scales linearly with the time horizon. The collision check
took 0:05 sec on the same CPU. Note that the reachable
sets can be computed from each vehicle and then send to
the vehicle that does the collision check. The occupancy set
that has to be broadcast in this scenario is25:8 kb which
can be broadcast with modern car to car communication
in less than0:05 sec such that the total computation time
is 0:34 sec+ 0:05 sec = 0:39 sec assuming an on-the-fly
collision check. Note that it is also possible to compute with
several alternative reference trajectories in parallel which
drastically increases the probability of finding a safe evasive
maneuver. In case no safe maneuver is found, one could
execute the one causing the least intersection of occupancy
sets. The computational time can be further decreased by
using specialized hardware such as GPUs or DSPs since
the computation of reachable sets is mainly performed using
matrix multiplications, see (5) and [30].

VII. C ONCLUSIONS

An approach for the safety verification of evasive maneu-
vers of autonomous vehicles has been presented. The main
feature of this approach is the possibility to guarantee safety
under uncertainties (measurements, system parameters, dis-
turbances) by computing the reachable set of the vehicle. The
reachable set allows obtaining the set of occupied positions
which then guarantees safety if not intersected with any other
set of occupied positions. The computations are efficient
allowing the algorithms to be used online for the decision
of executing planned evasive maneuvers. Possible extensions
of the presented approach are the consideration of evasive
maneuvers with time varying velocity and paths that are not
limited to arc segments.
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(a) Evasive maneuver foraAlat = 0:4 g.
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(b) Evasive maneuver foraAlat = 0:6 g.

Fig. 7. Occupancy set of evasive maneuvers (the axis coordinates are
distances in meters).
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