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Abstract— For path planning algorithms of robots itis impor- ~ The result of this evaluation was that all common approaches
tant that the robot does not reach a state of inevitable collision. cannot cope with one or more of these criteria, except the ICS
In crowded environments with many humans or robots, the set concept from [9]. Sets of inevitable collisions states, ahhi

of possible inevitable collision states (ICS) is often unacceptably . . . . .
high, such that the robot has to stop and wait in too many &7€ also called regions of inevitable collision (RIC) in @th

situations. For this reason, the concept of ICS is extended works, have been investigated in, e.g. [1], [10]-[12]. Unde

to probabilistic collision states (PCS), which estimates the and over-approximations of sets of ICS or RIC have been de-
collision p_robability for a given state. This aIIo_ws to efficiently veloped in [12]-[14]. Besides ICS related approachestygafe
run planning algorithms through crowded environments when ¢ qpots in uncertain environments has been assessed by
accepting a certain collision probability. A further novelty is I - .

that the obstacles possibly react to the robot in order to mitigate preghctmg the m.ovement. of Qynam|c obstacles with Markov
the risk of a collision. The results show a significant difference chains for robotic scenarios in [15] and for autonomous cars
in interaction behavior. Thus, this approach is especially suited in [16]. Other approaches use Monte Carlo simulation for
for active and non-deterministic moving obstacles in the robot the thread detection of vehicles in traffic scene in [17]][18

workspace. to verify the safety of all objects.

|. INTRODUCTION B. Organization of the Paper

In a static environment, the safety of a planned path canIn Sec. Il, the concept of inevitable collision states is
be verified by checking if the planned state trajectory dog€called from literature. This concept is extended to theeca
not enter the set of inevitable collision states (ICS), Wwhic When the future behavior of other workspace objects can only
depends on the geometry of the obstacles and the dynami& modeled probabilistically. Instead of a yes/no answer fo
of the robot. The concept of inevitable collision states cafn ICS, the extended definition of @obabilistic collision
be extended to scenarios in which the future behavior &tate (PCS) returns a probability for a collision. Since the
dynamic obstacles is exactly known, see e.g. [1]. Howevedefinition of PCS is not directly implementable - which is
in a scenario where the future behavior of other obstacles #s0 the case for the ICS concept as explained later, the
unknown, one cannot decide if the current robot state is dfplementation details are presented in Sec. Ill. This isedo
ICS since it depends on the future actions of the dynamfy first showing how the prediction of other workspace ob-
obstacles. For this reason, the concept of ICS is extendi@$ts is conducted. Then, a finite set of behavior altereativ
to probabilistic scenarios in this work. An example for sucHor the robot and the workspace objects is introduced in
a scenario is an outdoor robot finding its way through &rder to compute the robot trajectory causing the smallest
populated pedestrian zone, which has been investigated Gallision probability. Finally, in Sec. IV, numerical resi
the Autonomous City Explorer project, short ACE [2] (Theare presented which compute the probabilities for ICS in
ACE project is part of the CoTeSys Excellence Cluster [3[andomly generated scenarios. It is also investigated higw b
in which this work has been partly carried out). Anothethe impact on the probability computations is when inclgdin
example of a robot designed for crowded and uncertaifiteraction between the workspace objects and the robot.
scenarios is e.g. RoboX which guided visitors at the EXp?I | NEVITABLE AND PROBABILISTIC COLLISION STATES
2002 [4]. |

In this section, the notion and definition of inevitable
A. Related Work collision states is recapitulated first. This definition lien

In [5], ICS has been compared to many other commo%Xtended to a probabilistic setting which is believed to be
navi ati;)n schemes. such aezrness dia raéﬁ] dvnamic more appropriate in highly populated and uncertain envi-

Vg ¢ 9 » Ay ronments. Finally, it is shown that the newly introduced
window([7] and velocity obstacld8]. These alternative con-

. . robabilistic collision states are a generalization ofitadble
cepts have been evaluated with respect to the three cnter% o 9
collision states.

« A robotic system should consider its own dynamics; _ o
« Consider the environment objects’ future behavior; ~A. Inevitable Collision States
« Reason over an infinite time-horizon. The definition of inevitable collision states used in this
) ) ) . work is recalled from [11]. In order to precisely define in-
The authors are with the Institute of Automatic Control Emrgiring itabl llisi . h be intred
(LSR) of the Technische UniveraitMiinchen, D-80290 Mnchen, Germany evitable collision S.tates some nOtat'ons_ ave to be intedu
{da, althoff, dw, mb}@um de The states(t) and inputu(t) of the considered robot system



(for a point in timet) can take values from the state spate
and the control spade. For a given initial state(0) and an
input trajectoryu(t), the dynamics of the robot is determined
by the nonlinear differential equatioh = f(s,u). The

b _ _R. .
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workspace of the robot is denoted by and the subset of :

the workspace occupied by the robot is expressed as\V. ’ N N

The occupancy of other objects in the workspace is denote B+ Ty Ty
—Di T ¢

by B; and byB;(t) if they are moving. The unified occupancy
of all Obje(_:ts is written in short notation &: Ui:l,...,nb B; Fig. 1. Minkowski addition of the workspace occupancy of thbot and
wheren;, is the number of workspace objects. In order tQnother object.

distinguish complete input trajectories from values ofuitsp

u(t), an input trajectory is denoted by which maps the _ o __ . _ _
time ¢ to the input spacef0,cc[— . The set of input In the following, the collision probability foactiveobjects is
trajectories is denoted W and the Workspace Occupancydescribed, Ieading to the definition of Probabilistic Gatin
generated from the input trajectory is denoted bgii(¢)).  States for active and later also for passive objects.
These notations finally allow to define an inevitable cadiisi The probability that a certain regioR of the workspace is

state. occupied by an objedB; is obtained by integration:
Definition 1: Inevitable Collision State
! _ P(RNB: £0) - / filw,t, @) de.
The states is an ICS iff RO (—Bi+c:)
Vi e U, 3t,3B;, A(a(t)) N Bi(t) # 0. Thus, the probability that the robot syste#y applying the

input trajectorya, has a collision with another probabilistic
Loosely speaking, the robot is in an inevitable collisiorobjectB; is computed as
state if there exists no input trajectofy which can avoid
a crash with another workspace object. Next, this definitionS (t,4) := P(A(a(t)) N B; # 0) = / fi(z,t,0) dx,

is extended to a probabilistic setting. AP (a(t)) )

where the index of the crash probability© refers to the*"
i ) . . ] workspace object. Additionally, the probability that a sita

In crowded environments, motion planning with ICS is Nopccyrs within a time intervally,, £+ 1 is considered, where
reasonable. Consider the earlier mentioned scenario W;her?k = kT, k € Nt is atime step and” € R+ is the time step
robot finds its way through many people in a pedestrian zongze, The set occupied in the workspace for a time interval

Since in this scenario the workspace objects are humans.denoted byA(ii([ts, t1])) such that the collision for a
their future occupancys;(t) is unknown and can only be time interval is obtained by

predicted. For this reason, their motion and their future

occupancy is specified by probability density functions in p& ([ty., txi1[, @) :/ filz, [tr, toa[, @) de.

this work. AP (@([tr trt1]))

The probability density function of the occupancy in theThe probability of surviving is defined as the probabilitath
workspace caused by the objest is denoted byf;. Since no crash occurs such that the surviving probability for a cer
one can only formulate a probability distribution for atain time interval isp? ([ty, tit1[, @) = 1 —p$ ([th, tera], @).
random vector and not an occupancy sktrepresents the An upper bound for surviving a time interval when consid-
probability distribution of a point of 5, and the size of the ering all objects; is computed by

object is considered by enlarging the occupaotyof the _g - . s -

robot system. The enlargement is performed by Minkowski Ptk by [, ) = i, P (st ).

addition of the area(—B; + ¢;) to A, so that the new nisally, it is confusing that the upper bound is computed
occupancy of the robot isl” = A& (—B; +¢;), which i 1y the min operator. The reason is that only the object
explained in more detail in [19]. The Minkowski addition yith the highest collision risk (lowest survival probatyii

of the occupancy sets is visualized in Fig. 1 for a twojs considered and the remaining objects are neglected.

dimensional workspace with position coordinaigsandz,.  clearly, the upper bound for the probability of survival for
In this work, two different kinds of objects are considered:ine infinite time horizon is computed by

« Passive objects: theignore the robot’s trajectory. The

B. Probabilistic Collision States

associated probability density function of the occupancy 7° ([0, 00|, @) = H 7° ([t trg [, ).
is denoted byf;(z,t), wherez is the position in the k=0
workspace and is the time. Since the robot system can choose any input trajectory from

« Active objects: theyreact to the robot's trajectoryi the set of possible input trajectoriés the input trajectory

in order to reduce the collision risk. The associate@aysing the maximum survival probability is chosen:
probability density function of the occupancy is denoted

by fi(z , 7). P[0 00]) = maxp®(0. 00 ). @



The upper bound of the maximum survival probability allowscan be shown that it is sufficient to compute the ICS for the
to define the probability of an inevitable collision state& fo catch-up phase. However, the imitation approach can only

active objects. be applied if the workspace objects behave determinigtical
Definition 2: Probabilistic Collision State for active which is not the case in this work. Thus, only the approach
objects of computing maneuvers that come to a standstill can be

The probability of a state leading to a collision concerningpplied. Since the uncertainty in the prediction of other
active objects is defined as the lower bound of crashing witlvorkspace objects increases with time, the main focus lies o
an active obstacle under the best possible input trajectobyaking maneuvers which come to a standstill in a reasonable
u(t): time horizon. Additionally, only a finite number of braking
PCSa(s) =1—75..(]0,00]) maneuvers are considered as for the ICS implementations in

where ... ([0, 00]) is the upper bound for the probability e aUre:

of survival for active objects. I1l. PROBABILISTIC COLLISION STATE CHECKER
Although the definition of PCS allows arbitrary
workspaces and has no restriction to the object’s shape,
objects it is sufficient to consider the probability densit)}“,nemat'cs or d_ynamllcs, a PC_S chepker is presented .for
function f;(z, t) instead off;(z, t,4) since they move in- dlsk-shaped opjects in a two-dlmensmnal workspace with
dependently of the robot. When no index is givar((S) it position coordinatesc,, and x,. First, the model for the

The definition of PC'Sy(s) includes the special case for
passive objects, which is denoted B S,(s). For passive

is always referred to active object®('S,). motion prediction of passive and active objects is desdribe
In this work, active objects do not act hostile, they alway$€cond: the probability density function for passive olgiec
try to reduce the collision risk, so the condition is computed. Third, the optimal input trajectory of the rbbo
is obtained which is then used to determine the probability
PCSy(s) > PCSy(s) (3) density function for active objects. Finally, the collisio

is always true for active objects. This means that if activmeabi"ties are computed for passive and active objects.

objects are treated as passive onBs;Sy(s) is the upper A. Method for Motion Prediction

bound of P.CSa(S?' The definition of PCS; also a”O_V\_’S The distributions of passive objects can be computed with
general active objects, but as a consequence, condition ﬁ))tion prediction techniques as described in e.g. [20]-[23
would not hold anymore. In order to obtain a more efficient implementationfofz, ¢)
L and f;(x,t, ) than in the referred literature, a constant ac-
In 'Fhe appendix, it is shown tha?C'S(s) - Les= I_CS. c Ieraiion mz)del is used for the prediction of the workspace
which means that the presented Def. 2 is a generalization 8Ejects. The position, velocity and acceleration are deshot
Def. 1. If instead of a lower bound, an upper bound of th y 2, v anda, respect,ively. The indices andy refer to the

?Drg%ezbl)llty 10f a cras? ng’OL\J/l/?)ublg %%T%uotlzd’a:;emi?g'v?rlﬁgcg— and y-coordinate of the two-dimensional workspake.
S) = — S = .

: . ) o : T(Jﬁe dynamic system of the constant acceleration model is
implementation issues of the given definition are discusse

next. Ty 0 0 1 Of |zz 0
. iyl |0 0 0 1| |z, 0
C. Implementation Issues ol =10 0 0 o |v, + |’
The definition of ICS (see Def. 1) and the one for PCS Dy 00 0 0] |y, ay
(see Def. 2) is not implementable. The reason for this is
twofold: where the absolute value of the acceleratig? + a2 <

1) Infinite number of input trajectoriesOne problem is g™max js |imited. The velocity is indirectly limited by the
that an infinite number of input trajectoriésc U/ has to be initial velocity since only braking trajectories are caresied
checked. This is solved in literature, e.g. [11], by compyiti as discussed in Sec. II-C. After a time discretization with
with a finite subset of input trajectorigs This leads to a ¢, = kT, wherek € Nt has been introduced as the time
conservative computation of an ICS, i.e. a state may not kgep andl’ ¢ Rt is the time step size, the dynamic model
an ICS although the computation concluded that the statedan be exactly transformed to the discrete time form:
one. However, it can always be guaranteed that a state is not

2
an ICS with a finite number of input trajectories. Lz L0 T 0f |z, aw%
2) Limited time horizon:The problem of computing with | %v| (7, ) — 0 1 0 T| |zy (t)+ ay
an infinite time horizon can be solved by applying only | %= 00 1 0f vy a;T
maneuvers that come to a standstill after a finite time harizo L 00 0 1] vy a,T
When all workspace objects including the robot are not — ;") " o) —
moving anymore, the computation can be stopped. The same (4)

holds when the robot imitates the movement of workspade is further assumed that the initial state of the objects
objects which has also been discussed in [11]. Before thheas a multivariate Gaussian distributiai0) «~ N(u,X)
imitation can be applied, the robot is in a catch-up phase. With mean value; and covariance matrix.. From the



multiplication rule and the addition rule of independent oR || 2B

R
random variables with Gaussian distributions, it follouatt e
the mean value and the covariance of the state (4) are
updated as
((trt1) = Ap(te) +TU ) t=thin
Eltrr1) = AR(t) AT @y braking
where AT is the transpose of the system matrix Note trajectory

that the inputu has no influence on the covariance matrix

because this input is deterministic. robot A

B. Probabilistic Density Function of Passive Objects

The Gaussian distribution of th&" workspace objeci;
can finally be formulated as

Tz

( ¢ ) _ Fig. 2. Braking trajectory of the robot. The direction of theceleration
Jilw, ty) = is constant in the relative coordinate system of the robdttae magnitude

1 1 VTS (4,11 ; is constant over time.
EEESTE exp (= (0 = u(0) S (0) " o~ uler) ).

For passive objects, the acceleration inputs are set to zesbjects3; from the ones of the robot, they are denoted by
(az = 0, ay = 0). This is changed when active objects arai?, which are element oﬂf. The finite number of input
considered later. trajectoriesafk € UP is generated as previously presented
. in Sec. llI-C for which the direction of the acceleratign
C. Input Trajectory of the Robot is varied while the maximum absolute acceleraticti* is

Under the assumption that the workspace objects moggplied. The additional index in @%, indicates the ¥
independently of the robot, i.&i : fi(z,t,@) = fi(z,t), the jnput trajectory. The input trajectory causing the smalles
input trajectorya* that minimizes PC'Sp(s) is computed. probability PC S,(s) is denoted byii?:*.

The finite set of possible input trajectories are brakinghe optimal input trajectoriesi®* model the case when
trajectories, i.e. trajectories for which the velocity isne workspace objects try to avoid a collision with maximum
stantly decreasing. The state trajectories are computed fr effort or willingness. However, workspace objects may not
the input trajectories with the constant acceleration rhodeeact to the trajectory of the robot at all. For this reason,
of (4). The finite set of braking trajectories is chosen ag probability distributionf(e) is introduced, where is the
follows: Use the maximum possible absolute acceleratiogifort varying in the interval[0, 1]1. The applied absolute
such that, /a2 + a2 = a™**, where the maximum absolute acceleration for the optimal acceleration directioni6f* is
acceleration is limited through the contact friction of theobtained as,/a2 + a2 = ea™*. If e = 0, the acceleration
robot. The parameter that is varied is the directioh of  of the object isa, = a, = 0 and if e = 1, the full
the acceleration, where the raisdt emphasizes that the acceleration for avoiding the robot is app“ed as fd?p*

dil’eCtion iS giVen in the I’e|ative Coordinate SyStem Of th%ince 0n|y a f|n|te number Of Va|ues @fis used7 the ﬂl
robot and not in the global workspace coordinates. The scalgaues is denoted by,. The probability distribution ofe
product of the velocity vector and the direction vectgf  and the acceleration direction are depicted in Fig. 3. The

(both in relative coordinates) is always negative to ensukighal probability distribution is computed as
braking trajectories, see Fig. 2. Next, the computed input

trajectory @* minimizing PCSp(s) is used to adapt the Filw, b, @) = iekf'k(x £ )
probability distributionf;(z,t) such that it depends on*: B e
filx, t) — fi(x, t,a*).

D. Probabilistic density function for active objects

One of the difficulties in the implementation is that theg  Numerical Computation of the Crash Probability
probability distribution f;(xz,¢,4) of active workspace ob-

jects depends on the input trajectary while the choice of
the input trajectory in (2) depends @ ([0, oo, @) and thus
on the probability distributionf;(x,t,4). This mutual de-
pendence is broken up by first assuming that the probabili
distribution of the workspace objects is independent of th
input trajectorya of the robot. So thei € U/ is determined
by minimizing the crash probability?C'Sy(s) as described

wheren, is the number of considered values «f

Another important implementation detail is the efficient
computation of the integral of the probability distributiof
workspace objects according to (1). This is done by comput-
{ g with an occupancy grid with equidistant segmentation as

hown in Fig. 4. The occupancy of the rohdb(i(t)) can
be computed offline for all relevant initial conditions and
input trajectories, and then stored in a database. In terms

above. o . ) . ) 1The interval[—1, 1] would also consider hostile objects, which are not
In order to distinguish the input trajectories of the worksp part of the work.
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Fig. 3. Acceleration applied to an object in order to avoid thbot. brakin deterministic
robot A KING  gecupancy
trajectory  for 'y ¢ [0, oo

. . L . Fig. 4. Numerical integration of the crash probability.
of braking trajectoriegi, one has to compute only with the g 9 P Y

finite number of relative braking directions” because the TABLE |
absolute value is always™**, see Sec. IlI-C. In terms of
the system state, one has to compute with different initial
velocities. Initial positions and directions do not haveb® Eight regions forz[m] [0.1,0.3] e [15,1.7]
varied since the workspace objects are stored within thetrob
coordinate frame. Note that the occupancy of the robot is
deterministic, i.e. a cell is either occupied or not. Initial velocity direction<t[rad] | [§7, 7]
The occupancy of the other objects is probabilistic and com-
puted online. The Gaussian distributions are approximatel
mapped into the occupancy grid by assuming a uniform Acceleration directionad[rad] (3, 3]
distribution within the cell”;. The probability density value

SIMULATION PARAMETERS FOR THE OBSTACLES

One region forz,, [m] [—0.5,0.5]

Initial absolute velocity||d|| [3] | [0.0,0.5]

at the centery; of cell j is f;(y;,t,). From the uniform ~ Absolute acceleratiofzs |: {0.1,0.3,0.5,0.7,0.9}
distribution follows that the probability of the occupanisy 001l 0 0 0
" , 0 001l O 0
P(CU(t) c Cj|u =a(t)) = Afi(vj,tﬂ), AeRT Initial covarianceX(0) (see (5)) [ 0 0 001 0 ]
0 0 0 001

where A is the area of a cell. The above formula is anal-

ogously computed for passive objects. The probability of a

crash is finally obtained by summing up the probabilisti(;state s — [Om om 0.5m OQ}T_ The obstacles are
occupanciesP(xz € C;) for cells j which are occupied by s S

he rob i of the d o Fth laced randomly in front of the robot facing towards it.
the robot. An example of the deterministic occupancy of thg. ., geenario consists of one robot and three workspace

ropot a_nd Fhe proba.bilis.tic occupancy of another workspac@ojects_ The workspace objects are placed randomly in one of
object is visualized in Fig. 4. eight predefined adjacent regions which are partitioned in
IV. SIMULATION RESULTS direc_tion. The regions and other parameters for the olestacl
. . . . are listed in Tab. 1.

In th|§ section, simulations of the presenteg approach f,%n exemplary scenario using the listed parameters is shown
comput'mg F_)CS are perfor'med. No comparison tq ICS,'ﬁ] Fig. 5. In this scenario, the collision probability is texdd
done smce'lt. c'anno.t be directly applied to scenarios WItBy 45% for considering active objects. For each of the
non-deterministic objects. eight regions for the initial object positions, 100 randgml

T_h_e _following simulations_s_how the influence of the pmba'generated situations are computed based on two different
bilistic effort f(e) (for avoiding the robot) on the result of workspace object models:

PCS(s) for passive and active objects. It is assumed that the ) ) ) ) ) )
workspace objects are active objects as previous desgribede Passive objects, i.e. objects that are not trying to avoid
which means they do not behave hostile and (3) holds. the robot. Thus, the probability distribution for the effor
In order to show the usefulness of computing with a distri- is f(e) = 0, if e €]0,1]
bution of the effort for avoiding the robot, random scengrio 6,ife=0
are generated and evaluated. Despite the workspace gbjects impulse.

the initial state of the robot is fixed and has the initial « Active objects, i.e. objects that are trying to avoid the

, where § is the Dirac



region 1— 8 05

0.451
0.4F

o 0.35
ropot < ohjects 0.3}

praking
| trajectories 0.15f
0.1}

0.05¢

1 2 3 4 5 6 7 8
Region ofz, (see Tab. I)

(2) Motion prediction assuming passive objects, the astautieollision  Fig. 6. Relative difference between ICS probability betweetive and
probability is PC'Sp(s) = 40% passive obstacles.

1 since the crash probabilities are zero for active and passiv
workspace objects. During the evaluation, PCS was calcu-
lated600 times for three workspace obstacles. The algorithm
is implemented in Matlab and was executed on a AMD
Phenom with 2.5Ghz. The mean computational time of

0.8f

best
0.6f braking

0.4} trajectorya*

= 0.2f
% of PCS(s) for one robot state i8.1s.
02 V. CONCLUSIONS ANDFUTURE WORKS
—0.4} . . . . .
This paper consists of two major contributions, a novel
081 definition for the probabilistic computation of inevitable
-08— 0 05 1 15 collision states and an exemplary implementation of this
Tz [m] definition. The proposed definition allows to reason aboeit th
(b) Motion prediction assuming active objects, the assediabllision safety of planned paths in uncertain dynamic environments.

probability is PCSa(s) = 18% Further, it is shown that this definition is a generalization

Fig. 5. Random scenario far,[m] region 4: Gaussian distribution is Of the inevitable collision state approach. The presented
illustrated by2c-ellipsoids. method is especially useful in crowded environments where
the future behavior of other objects in the workspace has
high uncertainty.
robot. For the simulations, a Gaussian distribution forhe exemplary implementation has shown that the willing-
f(e) is used with mean valug = 0.5 and standard ness of objects to avoid the robot has a big impact on
deviationo = 0.2. In order to obtain a finite number of the collision risk. It is no noteworthy that the presented
effort valuesey, the Gaussian distribution is discretized.computation of PCS preserves the three criteria from [5]
In order to obtain significant results, randomly generatethentioned in the introduction: A robotic system should
situations with a collision probability of less th@n01 are consider its own dynamics, consider the environment ofject
discarded. To verify the usefulness of modeling the avaidan future behavior and reason over an infinite time-horizon.
capabilities of the objects, the mean relative difference  The simulations of the PCS checker showed that it is efficient
" and thus applicable to real world scenarios. It is planned to
D= 1 Z 1 PCSy(s) implement the PCS checker on a robot to verify the results

n ~ PCSp(s) in a crowded scenario.

obtained from all scenarios is shown in Fig. 6.

It can be seen that there is a significant difference between
the active and passive workspace objects. The maximumThe authors gratefully acknowledge partial financial sup-
achieved difference i€98%. It can also be seen that theport of this work by the Deutsche Forschungsgemein-
improvement depends on the distance to the obstacle wherthaft (German Research Foundation) within the excel-
assuming the velocity range and direction as listed in Tab.lénce initiative research clust@ognition for Technical Sys-
for the robot and the obstacles. tems — CoTeSyewwv. cot esys. or g), the Transregional
There is no difference for greater distances thhBm  Collaborative Research Centre ZBognitive Automobiles
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APPENDIX 5]
The purpose of the appendix is to show tiaE'S(s) = 1
« s = IC'S when computingPC'S(s) according to Def. 2. [6]
In a deterministic scenario, the position of other objests i
known such that the probability distribution of all objects [7]
a Dirac impulse):
; (8]
0, If z(t) = ¢;(t
file, 1) = 0 oth((aerise "
’ 9]
wherec;(t) is a point of object3; as introduced in Sec. II-B. [10]
From this follows directly that
[11]
A(a(t)) N Bi(t) # 0 < pC (1, @) = 1.
Thus, using Def. 1, the statement= /C'S can be reformu- [12]

lated to ~
Vi € U,3t, i, p¢ (t, 1) = 1.

. . . . L 13
Using the computations introduced in Sec. II-B, it is showr[| ]
that this statement is equivalent RC'S(s) = 1:

[14]
—VYa eUd,3t, i pd(t,a) =1
Vi e U, 3k, Fi : p ([te, thoa [, @) = 1 [15]
Vi e U, 3k, 3 pf ([tr, ther[, @) =0
Vi e U, Ik 75 ([tr, trra [, @) = 6]
~ min pf([tk,tk+1[,a> =0
z:1,...,nb
[eS) [17]
=V eU : p*([0,00f, @) = [ °([tns thsa ;@) = 0
s s - 18]
“Pmax ([0, 00[) = maxp~([0,00[,u) =0
aeU
—PCS(s) =1-7p3,([0,00]) = 1. (291
REFERENCES (20]
[1] R. Parthasarathi and T. Fraichard, “An inevitable ciiih state-
checker for a car-like vehicle,” ifProc. of the IEEE International
Conference on Robotics and Automati@007, pp. 3068—-3073. [21]
[2] A. Bauer, K. Klasing, G. Lidoris, Q. Nhlbauer, F. Rohriiler,
S. Sosnowski, T. Xu, K. Khnlenz, D. Wollherr, and M. Buss, “The
autonomous city explorer: Towards natural human-robot actésn in
urban environments/hternational Journal of Social Roboticsol. 1, [22]

no. 2, pp. 127-140, 2009.

M. Buss, M. Beetz, and D. Wollherr, “Cotesys — cognitioor f
technical systems,International Journal of Assistive Robotics and
Mechatronics vol. 8, no. 4, pp. 25-36, 2007.

(3]
[23]

R. Philippsen and R. Siegwart, “Smooth and efficient otdstavoid-
ance for a tour guide robot,” ifProc. of the IEEE International
Conference on Robotics and Automati@003, pp. 446— 451.

T. Fraichard, “A short paper about motion safety,” Rroc. of the
IEEE International Conference on Robotics and Automati?®07,
pp. 1140-1145.

J. Minguez and L. Montano, “Nearness diagram (nd) naioga
Collision avoidance in troublesome scenarid&EE Transactions on
Robotics and Automatiorvol. 20, no. 1, pp. 45-59, 2004.

D. Fox, W. Burgard, and S. Thrun, “The dynamic window aguio to
collision avoidance,1EEE Robotics & Automation Magazineol. 4,
no. 1, pp. 23-33, 1997.

P. Fiorini and Z. Shillert, “Motion planning in dynamic @inonments
using velocity obstaclesfhternational Journal of Robotics Reseaych

vol. 17, pp. 760-772, 1998.
T. Fraichard and H. Asama, “Inevitable collision statéstep towards

safer robots?’Advanced Roboti¢cs/ol. 18, pp. 1001-1024, 2004.

S. M. LaValle, Planning Algorithms Cambridge, U.K.: Cambridge
University Press, 2006.

L.Martinez-Gomez and T. Fraichard, “An efficient and gea 2d
inevitable collision state-checker,” iAroc. of the IEEE International
Conference on Intelligent Robots and SysteP@98, pp. 234-241.
L. Martinez-Gomez and T. Fraichard, “Collision avoidarin dynamic
environments: an ics-based solution and its comparativeiatiah,”
in Proc. of the IEEE International Conference on Robotics and
Automation 2009, pp. 100-105.

M. Zucker, “Approximating state-space obstacles fon4mlonomic
motion planning,” Carnegie Mellon University, Robotics titige,
Tech. Rep., 2006.

N. Chan, J. Kuffner, and M. Zucker, “Improved motion plamm
speed and safety using regions of inevitable collision,17th CISM-
IFToMM Symposium on Robot Design, Dynamics, and Cqor2@08,
pp. 103-114.

F. Rohrnilller, M. Althoff, D. Wollherr, and M. Buss, “Probabilistic
mapping of dynamic obstacles using markov chains for replannin
in dynamic environments,” irfProc. of the IEEE/RSJ International
Conference on Intelligent Robots and Syste2®98, pp. 2504—2510.
M. Althoff, O. Stursberg, and M. Buss, “Model-based Ipadilistic
collision detection in autonomous drivinglEEE Transactions on
Intelligent Transportation Systemeol. 10, pp. 299 — 310, 2009.

S. B. A. Broadhurst and T. Kanade, “Monte carlo road safeason-
ing,” in IEEE Intelligent Vehicle Symposium (1V20Q%)ne 2005, pp.
319-324.

A. Eidehall and L. Petersson, “Threat assessment foeg¢moad
scenes using monte carlo sampling,”2606 IEEE Intelligent Trans-
portation Systems Conferencgeptember 2006, pp. 1173-1178.
J.-M. Lien, “Hybrid motion planning using minkowski surhsn
Proceedings of Robotics: Science and System2008.

H. C. Yen, H. P. Huang, and S. Y. Chung, “Goal-directedgstrian
model for long-term motion prediction with application to atbmo-
tion planning,” inProc. of the International Conference on Advanced
Robotics and its Social Impa¢t2008, pp. 1-6.

D. Vasquez, T. Fraichard, and C. Laugier, “Incremengarhing of
statistical motion patterns with growing hidden markov moelsEE
Transactions on Intelligent Transportation Systerd. 10, no. 3, pp.
403-416, 2009.

S. Thompson, T. Horiuchi, and S. Kagami, “An environmerivein
model of human navigation intention for mobile robots,”Rnoc. of
The 13th IASTED International Conference on Robotics angliéa
tions 2007, pp. 119-125.

D. Helbing and P. Molnar, “Social force model for ped@strdynam-
ics,” Physical Review Evol. 51, pp. 4282-4286, 1995.



