
Safety Assessment of Autonomous Cars using Verification Techniques

Matthias Althoff, Olaf Stursberg and Martin Buss

Abstract— A common requirement for autonomous cars is a
safe locomotion which is evaluated by the method of hybrid
verification applied online. The approach checks avoidance of
static obstacles and dynamic traffic participants, which are
described by imprecise data on their positions and velocities.
The nonlinear dynamics of the autonomous car and other traffic
participants is conservatively abstracted to Markov chains,
which allows the efficient computation of their future positions
probabilistically. The result is the probability of a crash for
a given time horizon, showing if a given control strategy may
lead to unsafe situations.

I. INTRODUCTION

Ensuring safe trajectories obtained from path planning
of autonomous vehicles in dynamic environments is an
open research problem. Due to the importance of passenger
safety in cognitive and other cars, safety should be assessed
in terms of a guarantee. In traffic scenarios, measurements,
disturbances and decisions of traffic participants are
uncertain. This results in a set of possible initial states,
disturbance trajectories, and behavior predictions for each
road user. The fact that one has to deal with sets instead of
single values of positions and velocities leads to an infinite
number of possible outcomes of a traffic scene for a given
time horizon. As one cannot simulate all possible behaviors
of traffic participants, simulation techniques can only prove
that a system is unsafe, but never the opposite. For this
reason, methods from hybrid verification are used, which
allow to compute the set of all possible behaviors.

Algorithmic verification techniques for hybrid systems
[1] are an extension of model checking [2] for discrete
systems. Hybrid systems, which combine discrete and
continuous dynamics are useful for modeling road traffic
due to the interaction of decisions, such as lane changing
or turning, with continuous vehicle dynamics. In order to
verify a hybrid system, the set of states reachable within
a finite or infinite time interval is computed. Informally
speaking, the reachable set of a system is the tube that
encloses all possible trajectories of the system. If the tube
does not intersect a set of dangerous states, the system
is called safe. Computations of reachable sets have been
performed using level sets [3], ellipsoids [4], polytopes [5],
oriented rectangular hulls [6] and zonotopes [7] to represent
(conservative approximations) of the tube. Verification
results of road traffic problems have been published in [8]
and [9]. Shortcomings of simulation-based forward collision

All authors are with Institute of Automatic Control Engineering
(LSR) , Technische Universität München, 80290 München, Germany
{althoff,stursberg,mb}@tum.de

avoidance systems are described in [10]. However, to the
best knowledge of the authors, no work on algorithmic
verification for traffic scenarios that is applied online has
been published before. The online application is motivated
by the large variety of possible situations appearing in
traffic. If offline verification is applied, one can only
investigate a certain class of situations, as it is done e.g.
for the verification of an automatic cruise controller in [8].
In order to speed up verification for online application, the
continuous dynamics of the verified system is simplified to
Markov models, see [11]. The same idea has been applied
to stochastic hybrid systems [12] and to stochastic aircraft
conflict situations [13].

The verification process is illustrated in Fig. 1. The
nonlinear differential equations of the autonomous car and
other traffic participants are abstracted to linear ones based
on a state space discretization (sec. III). Because of the
superposition principle of the resulting linear models, their
reachable sets can be computed separately for the state-
and input-dependent solution (sec. IV). The state-dependent
solution is used to further abstract the linear system to a
Markov chain for efficient computations of the reachable
set during online operation (sec. V). The input-dependent
solution is calculated separately for the linear model and
is used to update the state of the Markov chain so that
the input is considered. Based on the obtained reachable
sets of the autonomous car and other traffic participants, a
probability for a crash is obtained for any time step k.

Offline Online

Nonlinear
Model

Abstraction

Linear Model

Discretization

Markov chains

Probability
of Safety

Markov Chain Execution
(state-dependent solution)

Updated probabilities
(without input)

Linear Model Execution
(input-dependent solution)

Updated probabilities
(with input)

Set Intersection

Other
reachable
sets

k
:=

k
+

1

Input Trajectory

Fig. 1. Verification process overview

II. INVESTIGATED SCENARIO

In order to motivate the methods to be presented subse-
quently, a typical traffic scenario is exemplarily investigated.
In this scenario, safety is checked for an autonomous car
changing lanes on a straight road in order to circumvent a
static obstacle while a car is approaching from the opposite
direction on the neighbored lane, as illustrated in Fig. 2.
It is assumed, that the other car respects the road traffic
regulations, i.e. it does not change its lane and stays below
speed limit.

other car

planned trajectory

static obstacle

autonomous car

x = x1

y = x2

xc

yc s

x5

x3

Fig. 2. Verification scenario

A. Model of the Autonomous Car

The dynamics of the autonomous vehicle is modeled by a
standard bicycle model, see e.g. [14]. Additional equations
are required to determine the position of the autonomous car.

ẋ1 = s cos(x3 + x5) ≈ s cos(x3)
ẋ2 = s sin(x3 + x5) ≈ s sin(x3)
ẋ3 = x4

ẋ4 = −c1

s
x4 − c2x5 + c3u

ẋ5 =
[
−1 − c4

s2

]
x4 − c5

s
x5 +

c6

s
u

(1)

The position of the center of gravity of the autonomous car in
road fixed coordinates are denoted by x1 and x2 respectively,
see Fig. 2. The angle between the car fixed coordinate system
(yc- and xc-axis) and the road fixed coordinate system (y-
and x-axis) is given by x3. The lateral car dynamics is
described by the yaw rate x4, and the angle x5 between
the longitudinal axis and the velocity vector of the center
of gravity. The constants c1 − c6 are known car specific
parameters and s is the speed of the car which is assumed to
be constant. There is one input u describing the steering
wheel angle. Note, that it is assumed that |x5| is much
smaller than |x3| in order to allow simplification of the first
two equations of the model as shown.

B. Model of the Other Car

The motion of the other car is only along the longitudinal
axis and is modeled as a hybrid system. It contains the
discrete modes standstill, speed limit, brake and accelerate
as depicted in Fig. 3. The invariants of the discrete states
are denoted by I and the transitions by t. The transition
conditions are attached to the transition arrows. When a
transition is taken, the continuous states are not reset. The
continuous dynamics is described by the position z1 and

stillstand braking

acceleration speed limit

t1 : z2 = c9

t2 : p1

t3 : z2 = 0

t4 : p2

t5 : p3

t6 : p4

I1 : z2 = 0 I2 : 0 < z2 < c9

I3 : 0 < z2 < c9 I4 : z2 = c9

ż1 = 0
ż2 = 0

ż1 = z2
ż2 = h1(w)

ż1 = z2
ż2 = h2(z, w)

ż1 = z2
ż2 = 0

Fig. 3. Other car model

the velocity z2. Note that the z1-axis equals the x2-axis of
the autonomous car, and that the x value on the road is set
constant for the other car (see Fig. 2). The brake dynamics
h1(w) is linear while the acceleration dynamics h2(z, w) is
nonlinear due to the dependence on the velocity:

h1(w) = −c7w, w ∈ [0, 1]

h2(z, w) = c7(1 −
√

z2

c8
)w, w ∈ [0, 1]

(2)

Note that the input w of the brake and acceleration model is
known only to be in the bounds w ∈ [0, 1]. The discrete
dynamics of the hybrid model also contains uncertainty.
Apart from the transitions t1 and t3, all other transitions are
depending on probabilities p. It is believed that a stochastic
driver model is best suited as usually only very few infor-
mation is available about other traffic participants.

III. ABSTRACTION TO LINEAR SYSTEMS

The abstraction of the nonlinear equations in (1) and (2)
to linear ones is performed for two reasons: one advantage
is the simpler abstraction to Markov chains, the other the
superposition of reachable sets which allows its separate
computation of state and input-dependent parts. In order to
abstract from nonlinear to linear dynamics, the rectangular
discretization of a subset X ⊂ R

n of a state space is
generally introduced:

Definition 1 (State space discretization): The discretiza-
tion function D : X → I assigns to each state x ∈ X ⊂ R

n

an identifier i ∈ I ⊂ N
+ where I is the finite set of identifiers.

The subset that is mapped to an identifier i is denoted by
Xi = {x|D(x) = i} and referred to as a cell. The state
space is discretized rectangularly and equidistant so that all
cells Xi are interval hulls with equal lengths: Xi =]xi, xi],
xi − xi = c, xi, xi, c ∈ R

n.

For simplicity, the abstraction is discussed for the au-
tonomous car only, but performed for the other car, too. The
dynamics of the autonomous car with additive disturbance

vector v (e.g. wind, slope), input vector u, state vector x
and initial value x(0) is given as follows:

ẋ = f(x, u) + v,

‖u‖∞ < δ, ‖v‖∞ < μ, x(0) ∈ Xi

The input and disturbance are bounded by sets and the
initial state is bounded by a cell from definition 1. The
abstraction to a linear system is performed by a first order
Taylor expansion with remainder, resulting in a differential
inclusion:

ẋ ∈ f(x∗
i , u

∗) +
∂f(x, u)

∂x

∣∣∣
x=x∗

i ,u=u∗︸ ︷︷ ︸
Ai

Δx

+
∂f(x, u)

∂u
)
∣∣∣
x=x∗

i ,u=u∗︸ ︷︷ ︸
Bi

Δu ⊕ Ei + v

(3)

with linearization points x∗
i = mid(Xi), u∗ = 0, where

the operator mid() returns the volumetric center of a set.
The symbol ⊕ denotes the Minkowski sum1 and Ei is the
linearization error.

A. Computation of the Linearization Error

The linearization error Ei is conservatively approximated
by the Lagrange remainder and the mean-value theorem. For
the vector z =

[
x u

]T
and the linearization point z∗

i =[
x∗

i u∗]T
, the error is given by:

Ej,i =
1
2

(z − z∗i)T ∂2fj(ξ)
∂z2

(z − z∗i) ,

z, ξ = Ri([0, T]) × �(δ)
(4)

where �(δ) is a hypercube of center 0 and of edge length
2δ. Let Ri([0, T]) denote the set of states x along trajectories
starting within Xi and evolve for the time interval t ∈ [0, T].
The index i refers to the starting cell Xi and the index j to
the jth equation of f . The set Ri([0, T]) is formally defined
over an auxiliary set Ri(T):

Definition 2: Ri(T) is an overapproximated set of the
exact reachable set Re

i (T) that can be reached starting from
Xi (for t = 0) at time t = T :

Re
i (T) = {x|x(t) is solution of (3), for t = T, x(0) ∈ Xi}

so that Ri(T) ⊃ Re
i (T).

Definition 3: Ri([0, T]) is the union of all overapproxi-
mated reachable sets Ri(t) for t ∈ [0, T]:

Ri([0, T]) =
⋃

t∈[0,T] Ri(t)

In order to obtain Ej,i from (4), interval arithmetics [15] is
used2 as it guarantees the enclosure of the exact solution
of Ej,i. Additionally, interval arithmetics is computation-
ally cheap. The disadvantage is that one may obtain large
overapproximations of Ej,i [15]. For later computations, the
linearization error is further abstracted by a hypercube so

1C ⊕ D = {c + d|c ∈ C, d ∈ D}
2used tool: b4m, Technical University of Hamburg-Harburg

TABLE I

TYPES OF REACHABLE SETS

Reachable set x(0) f(x∗, u∗) u v

R �= 0 �= 0 �= 0 �= 0

R̄ = 0 = 0 �= 0 = 0

R̂ �= 0 = 0 = 0 �= 0

Ř = 0 �= 0 = 0 = 0

that ∀j : Ej,i ∈ [−εi, εi]. The abstracted linear system can
finally be formulated as:

ẋ ∈ Aix + Biu + f(x∗
i , u

∗) ⊕ �(εi) + v,

‖u‖∞ < δ, ‖v‖∞ < μ, x(0) ∈ Xi

(5)

An alternative approach for the abstraction of nonlinear to
linear systems based on the Lipschitz property of f(x, u) has
been published in [16].

B. Iteration and Convergence of the Error Estimation

A drawback of the presented abstraction method is that
the reachable set Ri([0, T]) and the linearization error
Ei are mutually dependent, so that Ei has to be found
iteratively. It may also happen that the error estimation does
not converge when the time horizon T is chosen too large.
However, one can find a time step T so that the linearization
procedure is converging:

Proposition 1: If f(x, u) is Lipschitz, then

∃T, α : Ri([0, T]) ⊂ Xi ⊕ �(α) (6)

Proof: From the Lipschitz condition follows that
‖ẋ‖∞ < β < ∞ in (3). This leads to the following
overapproximation: Ri([0, T]) ⊂ Xi⊕�(β)T . Consequently,
one can choose T <

α

β
.

IV. REACHABLE SET COMPUTATION

After abstracting the nonlinear model to a linear one, the
reachable set can be composed of two types of reachable sets:
a state-dependent and an input-dependent one. The state-
dependent set is computed offline while the input-dependent
one is computed online. A further distinction is made by
computing the reachable set at time points and time intervals.
This procedure is applied to improve the error propagation
of the time interval solution when computing with Markov
chains, as it will be shown in section V. In table I different
types of reachable sets are defined. For example, R̂ is defined
as the reachable set of (5) with x(0), v �= 0, but with
f(x∗, u∗), u = 0. The reachable sets are finally computed by
Minkowski addition of the following partial reachable sets:

state-dependent input-dep.

(offline) (online)

R(T) = R̂(T) ⊕ Ř(T) ⊕R̄(T)
R([0, T]) = R̂([0, T])⊕ Ř([0, T]) ⊕ R̄([0, T])

A. State-dependent Solution

The sets R̂i(T) and R̂i([0, T]) are computed as described
in [7]. The geometry of these reachable sets is described by
zonotopes:

Definition 4 (Zonotope, taken from [7]): A zonotope Z is
a set such that:

Z =
{
x ∈ R

n : x = c +
p∑

i=1

xigi, −1 ≤ xi ≤ 1
}

where c, g1, . . . , gp ∈ R
n. The order of a zonotope is p

n .

Analogously to R̂i([0, T]), R̄i([0, T]) is computed by regard-
ing the input u as a disturbance with all possible values for u:
‖u‖∞ < δ. The value Ři(T) is well known to be computed
as:

Ři(T) =
∫ T

0

eAi(t−τ) dτf(x∗
i , u∗)

= A−1
i (eAiT − I)f(x∗

i , u
∗)

where I is the identity matrix. The time interval solution
Ři([0, T]) is approximated by a line from the origin to Ři(T)
so that Ři([0, T]) ≈ t

T Ři(T), t ∈ [0, T]. This line is bloated
by a hypercube �(η) that is obtained as described in [17]:

Ři([0, T]) =
t

T
Ři(T) + �(ηi)

ηi =
∥∥A−1

i

[
eAiT − I − AiT − 0.375(AiT)2

]
f(x∗

i , u
∗)

∥∥
∞

B. Input-dependent Solution

The remaining task is to calculate the reachable set R̄i(T)
resulting from input u which is supposed to be generated by
an online controller. As R̄i(T) has to be computed online,
the computational efficiency is increased by sampling u with
a first order hold as illustrated in Fig. 4:

u(t) ∈ u(k) +
u(k + 1) − u(k)

T
Δt + �(γ)

t ∈ [(k − 1)T, kT], Δt ∈ [0, T]

The sampling error γ (see Fig. 4) is considered by the
state-dependent solution. As the state-dependent solution is
computed offline, an upper threshold γ for all expected input
trajectories u is defined in advance. If an input trajectory
u exceeds this limit, the trajectory is regarded as unsafe.
The set that is added to the right side of (5) is obtained
by �(‖Bi‖∞γ). The improved computational efficiency due
to the sampling results from the analytical computation of
R̄i(kT), which is given for k ∈ R

+ by:

R̄i(kT) = A−1
i (eAiT − I)Bi u(k)

+ A−2
i (eAiT − I − AiT)Biu̇(k)

0 T 2T 3T

u(t)

t

2γ

Fig. 4. Sampled input trajectory

The solution for the constant value u(k) is analogous to
the computation of Ři(T). The solution for λΔt with λ =
u(k+1)−u(k)

T is obtained by∫ t

0

eA(t−τ)τ dτBλ

=
[
tA−1(eAt − I) − A−2(eAt(At − I) + I)

]
Bλ

=A−2(eAt − I − At)Bλ

C. Reachability of the Hybrid System

The reachable set of the hybrid system of the other car (see
Fig. 3) is computed for each invariant region I as described
in the two previous subsections. When the reachable set
intersects an invariant, the computation is continued in each
invariant for the intersection of the reachable set with the
corresponding invariant. Note that the intersection of the
reachable set with one of the invariants, does not result
in zonotopes in general. For this reason, intersections are
enclosed by zonotopes as it is done in [7].

D. Conversion from Zonotopes to Polytopes

The zonotopes of the reachable sets Ri(T) and Ri([0, T])
are converted to a polytope representation in order to com-
pute intersections with state space cells Xi as a prerequisite
of the Markov chain generation. The order of these zonotopes
is greater than one and can be controlled by a zonotope
reduction technique in [7]. The conversion from zonotopes
to V-polytopes3 is computed by the convex hull of possible
vertices of the zonotope:

hk = c ± g1.. ± gp, k ∈ {1, . . . , 2n}
where hk is a potential vertex, c the center and g1, . . . , gp

are the generators of the zonotope. This computation results
in 2p vertex candidates so that the computational effort can
be drastically reduced by setting the zonotope order to one
which results in 2n vertices. This drastic order reduction
is performed by algorithm 1 that differs from the one in
[7]. The algorithm is based on picking n generators of the
Zonotope Z that span the reduced zonotope in a best way.
The reduced zonotope encloses the original one by stretching
the chosen generators. This is achieved by applying the box
operator box() which returns an interval hull that encloses

3V-polytope: convex polytope is represented by vertices

Algorithm 1 Reduce zonotope

Input: Z =
[
c, G

]
, G =

[
g1, . . . , gp

]
Output: Zred (reduced zonotope)

P = gj : max(‖gT
j G‖1)

for k = 1..n do
g∗ = gj : min(‖gT

j P‖1/‖gj‖ξ+1
2)

P :=
[
P 1

|g∗|g
∗
]

end for
Zred = Pbox(P−1Z)

the argument. The first generator is picked so that ‖GT gj‖1

is maximized which returns a long generator that is well
aligned with other generators. The further generators are
chosen according to:

gj : min
(1
|gj |ξ

∑
k

| cos(αkj)|
)

= min
(‖gT

j P‖1

‖gj‖ξ+1
2

)

where αkj is the angle between the generators gk and gj . The
parameter ξ weights the length of the generator gk against its
angle to gj . A reduction example of a randomly generated
zonotope can be seen in Fig. 5.

−4 −2 0 2 4

−5

0

5

10

Fig. 5. Example for zonotope reduction

V. MARKOV CHAINS

The polytopes describing the reachable sets R i(T) and
Ri([0, T]) are used to compute the transition probabilities of
discrete time Markov chains which abstractly represent the
continuous linear dynamics of (5). In this paper, probabilities
are assigned to the fact that the system state is in a cell Xi at
a particular time point or interval. Based on the assumption
that the state of the system is equally like to be in any point
of the reachable set, the transition probabilities of the state-
dependent Markov chains are calculated similarly as in [11]
by:

Φ∗
ij(T) =

V ((R̂j(T) ⊕ Řj(T)) ∩ Xi)
V (R̂j(T) ⊕ Řj(T))

Φij([0, T]) =
V (Rj([0, T]) ∩ Xi)

V (Rj([0, T]))

where V () is an operator determining the volume of a poly-
tope. The matrix Φ∗

ij(T) contains the probabilities that a state
along the trajectory (without input u) starting in cell j lies
in cell i after time T . Φij([0, T]) contains the probabilities
within the time span t = [0, T] with ‖u‖∞ < δ. The state-
dependent transition probabilities Φ∗

ij(T) and Φij([0, T]) can
be computed offline. In contrast, the transition Matrix for the
input-dependent solution is computed online from:

Φ̄ij(T) =
V ((R̄j(T) ⊕ Xj) ∩ Xi)

V (Xj)

For linear systems, where R̄j(T) is the same for all cells, the
computation of the columns of Φ̄ij(T) has to be performed
once and can be copied for the remaining columns. The
probability pi that the state is in cell Xi between the times

kT and (k + 1)T is calculated based on the probability at
time points kT :

pi((k + 1)T) = Φ∗
il(T)Φ̄lj(T)pj(kT)

pi([kT, (k + 1)T]) = Φij([0, T])pj(kT)

As pi([kT, (k+1)T]) is computed based on pj(kT), overap-
proximations made by the computation of p i([kT, (k+1)T])
are not propagating. An example of the transformation of the
continuous reachable set to Markov chains is visualized in
Fig. 6 for the variables x4 and x5 of the bicycle model (1).
The continuous reachable sets on the left side as well as
the probabilistic occupancy of the state space cells on the
right side are given for the time point and time interval case.
Additionally, sample trajectories starting from the vertices of
the initial set are plotted in the figures.

−0.4 −0.2 0
−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

x
4

x 5

X0

(a) Reachable set R([0, T])

for ‖u‖∞ < δ

−0.4 −0.2 0
−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

x
4

x 5

(b) Probabilistic reachable set de-
scribed by pi([0, T]) for ‖u‖∞ < δ

−0.4 −0.2 0
−0.015

−0.01

−0.005

0

0.005

0.01

0.015

x
4

x 5

−0.055 −0.05 −0.045 −0.04 −0.035

7

7.5

8

8.5

9

x 10
−3

x
4

x 5

X0 R(T)

(c) Reachable set R(T) for u = 0

−0.4 −0.2 0
−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

x
4

x 5

(d) Probabilistic reachable set de-
scribed by pi(T) for u = 0

Fig. 6. Reachable set of the bicycle model (1) described by zonotopes and
cell probabilities with x(0) ∈ X186

VI. VERIFICATION RESULTS

This section shows results of the presented methods
applied to the traffic scenario introduced in section II. Car
parameters and initial conditions are given in the tables
II and III. The variables pacc, pbrake, psl, pss refer to the
probability that the discrete state is in one of the modes
acceleration (acc), brake (brake), speedlimit (sl) or stillstand
(ss). The state space is discretized as follows: the road is
discretized by 50 segments for the x and y direction. The
speed of the other car is discretized by 21 segments and
all other states of the autonomous car are discretized by 30
segments. As the solution of the autonomous car and the
other car are independent and the autonomous car dynamics

TABLE II

PARAMETER VALUES

autonomous car other car

c1 160 m
s2·rad

c7 10 m
s2

c2 −1.6 1
s2·rad

c8 60 m
s

c3 53 1
s2·rad

c9 15 m
s

c4 −3.5 m2

s2·rad
p1 0.5 –

c5 156 m
s2·rad

p2 0.5 –

c6 78 m
s2·rad

p3 0.5 –

s 15 m
s

p4 0.5 –

TABLE III

SET OF INITIAL CONDITIONS

autonomous car other car
x1 [3, 6] m z1 [75, 80] m
x2 [1.8, 2.2] m z2 [3, 8] m/s
x3 [−0.01, 0.01] rad pacc, pbrake 0.5 –
x4 [−0.01, 0.01] rad/s psl, pss 0 –
x5 [−0.01, 0.01] rad

is coupled in one direction (x4,5 → x3 → x1,2), one can
build separate Markov chains for the system parts. Due to
these separate Markov chains, the total number of states is
6900 and the execution time is 0.88 seconds for t = [0, 3.2]
seconds. The calculations have been performed with Matlab
on a notebook dual core processor (1.66 GHz).

The resulting reachable sets of both cars are visualized in
Fig. 7 for four time intervals. The car starting from the right
lane is the autonomous car, the one starting from the left
one is the other car. The full line shows a sample trajectory
of the autonomous car for an initial value in the set of initial
conditions. The box represents the static obstacle. Dark
color of the discretized road cells indicates high probability
and light color small probability that a car is located in a
cell at the given time interval. Note that the probabilities
refer to the presence of the whole car and not to its center
of mass only (car length: 4m, car width: 2m).

VII. CONCLUSIONS

The potential of hybrid verification in the safety assess-
ment of cognitive cars has been demonstrated. The presented
approach is general and can be applied to more complex
traffic situations. It considers uncertainties as they naturally
appear in traffic, and the presented approach is scalable: if
the traffic situation is more complex, one can use Markov
chains of lower resolution, i.e. less discrete states so that
verification stays faster than real time.

ACKNOWLEDGMENTS

The authors gratefully acknowledge support of this work
by the Deutsche Forschungsgemeinschaft (German Research
Foundation) within the Transregional Collaborative Research
Centre 28 Cognitive Automobiles.

−4−2 0 2 4
0

10

20

30

40

50

60

70

80

x

y

(a) t=0-0.8 sec

−4−2 0 2 4
0

10

20

30

40

50

60

70

80

x

y

(b) t=0.8-1.6 sec

−4−2 0 2 4
0

10

20

30

40

50

60

70

80

x

y

(c) t=1.6-2.4 sec

−4−2 0 2 4
0

10

20

30

40

50

60

70

80

x

y

(d) t=2.4-3.2 sec

Fig. 7. Reachable sets of the traffic scenario

REFERENCES

[1] A. van der Schaft and H. Schumacher, An Introduction to Hybrid
Dynamical Systems. Springer, 2000.

[2] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking. MIT
Press, 2000.

[3] C. Tomlin, I. Mitchell, A. Bayen, and M. Oishi, “Computational
techniques for the verification and control of hybrid systems,” in
Proceedings of the IEEE, vol. 91, 2003, pp. 986–1001.

[4] O. Botchkarev and S. Tripakis, “Verification of hybrid systems with
linear differential inclusions using ellipsoidal approximations,” in Hy-
brid Systems - Computation and Control, ser. LNCS 1790. Springer,
2000, pp. 73–88.

[5] A. Chutinan and B. H. Krogh, “Computational techniques for hybrid
system verification,” in IEEE Transactions on Automatic Control,
vol. 48, no. 1, 2003, pp. 64–75.

[6] O. Stursberg and B. H. Krogh, “Efficient representation and com-
putation of reachable sets for hybrid systems,” in Hybrid Systems -
Computation and Control, ser. LNCS 2623. Springer, 2003, pp. 482–
497.

[7] A. Girard, “Reachability of uncertain linear systems using zonotopes,”
in Hybrid Systems : Computation and Control, vol. 3414, 2005, pp.
291–305.

[8] O. Stursberg, A. Fehnker, Z. Han, and B. H. Krogh, “Verification of
a cruise control system using counterexample-guided search,” Control
Engineering Practice, vol. 12/10, pp. 1269–1278, 2004.

[9] J. Hu, J. Lygeros, M. Prandini, and S. Shankar, “A probabilistic
framework for highway safety analysis,” in Proceedings of the 38th
Conference on Decision and Control, 1999.

[10] K. Lee and H. Peng, “Evaluation of automotive forward collision warn-
ing and collision avoidance algorithms,” Vehicle System Dynamics,
vol. 43, no. 10, pp. 735–751, 2005.

[11] J. Lunze and B. Nixdorf, “Representation of hybrid systems by means
of stochastic automata,” Mathematical and Computer Modeling of
Dynamical Systems, vol. 4, pp. 383–422, 2001.

[12] X. Koutsoukos and D. Riley, “Computational methods for reachability
analysis of stochastic hybrid systems,” in Hybrid Systems: Computa-
tion and Control, 2006, pp. 377–391.

[13] M. Prandini and J. Hu, “A stochastic approximation method for
reachability computations,” Final Report of the Hybridge Project, pp.
115–147, 2005.

[14] R. Rajamani, Vehicle Dynamics and Control. Springer, 2005.
[15] L. Jaulin, M. Kieffer, and O. Didrit, Applied Interval Analysis.

Springer, 2006.
[16] E. Asarin, T. Dang, and A. Girard, “Reachability analysis of nonlin-

ear systems using conservative approximation,” in Hybrid Systems:
Control and Computation, 2003, pp. 20–35.

[17] T. Dang, “Vérification et synthèse des systèmes hybrides,” Ph.D.
dissertation, Institut National Polytechnique de Grenoble, 2000.

