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Abstract—Increasing number of in-vehicle sensors, actuators
and controllers involved in novel applications such as autonomous
driving, requires new communication technologies to fulfill het-
erogeneous non-functional requirements such as latency, band-
width and reliability. Time-Sensitive Networking (TSN) is a set
of new standards in development by Institute of Electrical and
Electronics Engineers (IEEE) defined to support mixed criticality
based on Ethernet technology. This technology has recently
raised significant attention of automotive domain. However,
the mutual influence of application requirements in relation to
TSN standards still remains a complex problem to master. For
instance, considering an existing complex automotive network, an
engineer has to carefully analyze the possible effects of adding
new sensors on other existing critical applications. The network
has to be configured such that the fulfilling of all requirements is
verified. Targeting this problem, a modeling approach based on
Logic Programming (LP) is developed to support more efficient
configuration and verification process with focus on in-vehicle
TSN networks.

I. INTRODUCTION

Time-Sensitive Networking (TSN) [1] is a set of new
standards which are in developing process by Institute of
Electrical and Electronics Engineers (IEEE) to support mixed
criticality based on Ethernet technology. These standards will
help to overcome challenging requirements of automotive
domain considering upcoming innovative applications such
as autonomous driving and infotainment that require e.g.
fully deterministic network behavior, high bandwidth, fail-
operational and etc.
Despite the strengths of TSN, increasing number of involved
sensors, actuators and Electronic Control Units (ECU) and
mutual influence of requirements still cause high network
engineering overhead for automotive network engineers. For
example, considering an existing in-vehicle network and its
applications’ requirements, reviewing the whole configuration
is required when new critical nodes join the network. After
reviewing the TSN standards, some parts of the network
configuration may need to be modified and after this recon-
figuration one has to formally verify that all requirements are
satisfied.
In this paper, a modeling approach based on Logic Program-
ming (LP) is developed for configuration and verification

of TSN networks. The major advantage of our approach
compared to the other modeling approaches is that the whole
model consists of logical facts and rules. Using inference
algorithms such as backward chaining (e.g. used in Prolog),
the complexity of verification of application requirements is
reduced to build the correct queries on the model in order
to verify specific network properties including non-functional
requirements of the applications. The modeling approach is
also used to find out interesting correlations between different
requirements which are important for configuration. The main
contributions are: definition of the logical facts and rules
(work in progress) in section III and modeling demonstration
using a concrete example in section IV including use case
examples for configuration and verification.

II. RELATED WORK

An abstract methodology for modeling and verification of
Cyber-Physical Systems (CPS) is developed and demonstrated
in [2], [3], [4] using logic programming. The focus is to build
a bridge between logic programming and hybrid automata as
the underlying model with infinite structures and properties.
In contrast to these contributions, we additionally deal with
mutual influence of different requirements and configuration
aspects of In-vehicle TSN. Declarative networking is proposed
in [5], based on logic programming language Datalog which
is a subset of Prolog. This contribution is extended in [6] in
order to apply it for declarative network verification of e.g.
routing protocols without discussing the configuration aspects.
A practical declarative network management approach based
on Datalog is presented in [7]. This paper only describes how
to specify QoS requirements such as latency, jitter and band-
width but it does not explain how to use it for configuration
and verification. It has been shown in [8] that Prolog is a
programming language which is sufficiently expressive and
well-suited for the implementation of distributed protocols. In
this paper, Prolog is applied for implementation of the TSN
modeling approach. Simulation-based approaches [9], [10],
[11], [12] are developed to analyze the performance of Audio
Video Bridging (AVB) and TSN. The main disadvantage of
these approaches is that not all of the corner cases can be
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covered by simulations and therefore are not suitable for re-
quired formal verification of critical requirements. In contrast,
formal analysis methods are developed in [13], [14] to verify
the performance of the TSN shapers. These methods however,
focus only on timing and latency aspects on the network layer
and do not respond to the question of mutual influence of
critical requirements.

A. Discussion

The majority of the logic programming-based approaches
focus on specification and verification of network protocols.
We exploit logic programming for step-by-step modeling TSN
features.

III. MODELING APPROACH

Prolog (SWI implementation) is used as the logical model-
ing language. It is restricted to Horn clauses and consists of
facts and rules. Each rule has the form α : − β1 , β2 , ..., βn
that is equivalent to β1 ∧ β2 ∧ ...βn ⇒ α. α is called head
and β1 , β2 , . . . , βn is the body of the rule. It is obvious that
head is true if the body is true. Each β in the body is a call
to a defined predicate. These predicates in the body are called
goals and can be either a fact (a clause with empty body) or
a rule.
Each PL-based TSN Model is a knowledge base that consists
of Prolog facts and rules. Facts are used to describe properties
and requirements in the network. The rules are used to describe
the relations between facts and other rules. For instance,

p u b l i s h e s ( f r o n t c a m e r a , f r o n t c a m e r a p 1 , dom cam
[ t f r o n t c a m e r a ] ) .

is a fact describing that the device front camera uses the Eth-
ernet port front camera pl to send a data topic t front camera
in the camera domain dom cam and

f i r s t P o r t (Dom, T , P ) :− p u b l i s h e s ( , P , Dom, TL ) ,
member ( T , TL ) .

is a rule that declares that P is the starting Ethernet egress
port while transmitting data topic T in domain Dom, if
({⇐} ≡ {: −}) a device publishes a list of data topics TL
in domain Dom using port P and (and ≡ ∧ ≡ {, }) also T is
a member of TL.
In the following, facts and rules are presented that are devel-
oped to model a TSN network step-by-step.

A. Facts

The modeling clauses consist of the following facts: topic,
qos, publishes, consumes, device, switch and isLinked.
Each data topic T is either a periodic topic or event-based
topic. We define:

T periodictopic = (Tdomain, Tname, Tperiodic, T
(µs)
period, T

(Byte)
size )

T eventtopic = (Tdomain, Tname, Tevent, T
(Byte)
size ) (1)

This classification of topics in periodic and event-based is
significant regarding the hard real-time quality of service
requirements. Data topics with tight timing requirements have
to be modeled as periodic in order to calculate a feasible

schedule with e.g. the time-aware shaper in IEEE 802.1Qbv.
The combination of a topic domain and topic name is assumed
to be unique in the whole TSN network. Consider all available
topics: Ttopics = {t1, t2, . . . , tn} and all available domains as
Tdomains = {dom1, dom2, . . . , domt}. It holds that

∀T ′,T ′′∈Ttopics
(T ′
domain = T ′′

domain ⇒ T ′
name 6= T ′′

name) (2)

The origin of the idea of using domains is in data-centric
middleware approaches.
TSN nodes are either a device or a switch that consist of a
set of Ethernet ports. Devices and switches use these ports
to transmit or forward data topics embedded in Ethernet
frames. Device and switch facts are defined as a tuple of
name Dname, Sname and the list of their ports Dports, Sports

as a subset of all existing ports in the network defined as
EP = {p1, p1, . . . , pn}. Formally defined:

Ddevice = (Dname, D
ports), Sswitch = (Sname, S

ports),

Ddevices = {D1, D2, . . . , Dm}, Sdevices = {S1, S2, . . . , St},
∀Di∀Sj(Di ∈ Ddevices ∧ Sj ∈ Sdevices),

m⋂
i=1

Dports
i

t⋂
j=1

Sportsj = ∅ ,

m⋃
i=1

Dports
i

t⋃
j=1

Sportsj = EP (3)

Each device can publish or consumes a set of topics in a
specific domain. The facts are formally defined as:

P
{Ttopic,Ddevice}
publishes = (Dname, Dport, Tdomain, P

{t1,t2,...,tu}
topics ),

C{Ttopic,Ddevice}
consumes = (Dname, Dport, Tdomain, P

{t1,t2,...,tv}
topics ),

{t1, t2, . . . , tu} ⊆ Ttopics, {t1, t2, . . . , tv} ⊆ Ttopics (4)

The quality of service requirements of a topic among publisher
and consumer devices are modeled using the fact qos which
is defined as:

Q{Ttopic,Ddevice}
qos = (Q

{latency,reliability,... }
type , Tdomain, Tname,

Dpublisher, Dconsumer, Q
{0,1,...,7}
V LAN ) (5)

Network connections are defined using isLinked fact which
has to be symmetric in order to describe bi-directional com-
munication. Formally:

L
{Sswitch,Ddevice}
isLinked = (L′

port, L
′′
port, L

(
Byte
s )

bandwidth),

∀L′
port ∀L′′

port(∃Ddevice(L
′
port ∈ Dports) ∨

∃Sswitch(L′′
port ∈ Sports)) (6)

B. Rules (WORK IN PROGRESS)

The modeling inference rules are developed step-by-step
in order to obtain useful information based on the defined
facts. Such information is used for simplification of network
verification and configuration. To make the isLinked fact
symmetric, link is defined as:
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l i n k ( P1 , P2 ,BW) :− i s L i n k e d ( P1 , P2 ,BW) .
l i n k ( P1 , P2 ,BW) :− i s L i n k e d ( P2 , P1 ,BW) .

To find the involved devices, switches and ports involved in
transporting a topic, path is defined as :

p a t h ( S t a r t , End , Pa th ) :− t r a v e l i n g ( S t a r t , End , [
S t a r t ] , Temp ) , r e v e r s e ( Temp , Pa th ) .

where traveling and reverse are helper predicates. To find the
first and the last port for transmission of a topic, following
rules are defined:

f i r s t P o r t (Dom, T , P ) :− p u b l i s h e s ( , P , Dom, TL ) ,
member ( T , TL ) .

l a s t P o r t (Dom, T , P ) :− consumes ( , P , Dom, TL ) ,
member ( T , TL ) .

These rules are used as goals in streamPorts that find all
related ports for transmission a topic and classifies ingress and
egress ports. For TSN shapers (specially time-aware shaper),
the egress ports play a significant role. For example, the most
latency-related part of time-aware shaper in IEEE 802.1Qbv
standard, depends on adequate schedule of gate drivers of the
egress ports. Hence, it is significant to know how many frames
with which priority are queued in such a port. Before a device
starts to publish a new topic to a consumer, it is important to
check and verify the current status of all affected egress ports
on the transmission path. The definition of streamPorts is:

s t r e a m P o r t s (Dom, T , CL2 , EP , IP ) :− f i r s t P o r t (Dom, T
, F i r s t P ) , l a s t P o r t (Dom, T , Las tP ) , p a t h (
F i r s t P , LastP , PL ) , removeSwi tchDevice ( PL , CL1
) , removeDevice ( CL1 , CL2 ) , p o r t C l a s s i f i e r ( CL2
, IP , EP ) .

where removeSwitchDevice, removeDevice and portClassifier
are helper predicates.

IV. MODELING EXAMPLE

For the purpose of demonstration, an Advanced Driver
Assistance System (ADAS) example scenario [15] is used. It
is extended in order to cover the tight real-time requirements
for critical applications such as airbag. The extension includes
two sensors which are responsible for collecting collision in-
formation and an ECU, responsible for processing those data.
The last node is an airbag trigger which will act according to
the messages it gets from ECU. An excerpt of the LP-based
model focusing on airbag domain is explained in this paper.
Figure 1 depicts an excerpt of the related part of the ex-
ample model. The first topic fact is a predicate, describing
that t airbag sensor1 is a periodic topic and belongs to
dom airbag domain with a period value of 250 microseconds
and a size of 200 bytes. The first qos fact indicates that
there is latency requirement on topic t airbag sensor1 which
is being published by device airbag sensor1 and is being
consumed by airbag trigger and it has the highest priority
indicated by vlan value of 3. The maximum allowed latency
for this topic is initially its period value, described using the
topic predicate as mentioned before. The second publishes
and consumes facts describe that airbag trigger ECU device,
uses port airbag trigger p1 to publish t airbag trigger topic

which is being consumed by airbag airbag device on the port
airbag airbag p1. The predicate switch describes that sw2 has
seven Ethernet ports [sw2 p1, sw2 p2, . . . , sw2 p7]. Similar
to switch predicate, the first device fact of our modeling exam-
ple indicates that airbag sensor 1 uses airbag sensor p1 for
communication. To declare that there is a Gigabyte link be-
tween switch port sw1 p2 and device port airbag trigger p1,
the isLinked fact is used.

A. Use case: Configuration
The developed LP-based model is a knowledge basis which

helps to reduce configuration effort. The engineer formulates a
set of queries and gets response back based on inference mech-
anisms of Prolog. For instance, a new device airbag sensor2
has to be integrated into the network considering the airbag
application. Because of the highest crticality level, its data
has to be scheduled using time-aware shaper of TSN. The
engineer has to find out which egress ports are on the path of
the airbag sensor2 to its consumer. Using the following query
all egress ports can be found on the path between publisher
and consumer:

?− s t r e a m P o r t s ( dom airbag , t a i r b a g s e n s o r 2 , ,
E g r e s s P o r t s , ) .

Prolog responds with:

E g r e s s P o r t s =[ a i r b a g s e n s o r 2 p 1 , sw1 p2 ] .

These ports have to be considered when updating the time-
aware shaper’ gate driver. Another interesting question but
more complicated one is: which data topics have the highest
latency priority and go through switch sw1 and moreover
which period value do they have? The appropriate Prolog
query is:

?− t o p i c (Dom, T , p e r i o d i c , Pe r iodVa l , ) , qos (
l a t e n c y , Dom, T , , , 3 ) , p u b l i s h e s ( , P , Dom, LT )
, member ( T , LT ) , l i n k ( P , SP , ) , s w i t c h ( sw1 , SPL )
, member ( SP , SPL ) .

Prolog finds three topics, one after another:

Dom = dom airbag , T = t a i r b a g s e n s o r 1 ,
P e r i o d V a l = 250 , P = a i r b a g s e n s o r 1 p 1 , LT=
[ t a i r b a g s e n s o r 1 ] , SP = sw1 p9 , . . .

B. Use case: Verification
Similar to configuration use case, verification of the network

properties is done by adequate queries. Considering that airbag
application is very critical the network engineer can verify that
there are at least two disjoint paths between airbag trigger
ECU and the airbag airbag actuator. The query is formulated
as:

?− f i n d a l l ( PL , p a t h ( a i r b a g t r i g g e r p 1 ,
a i r b a g a i r b a g p 1 , PL ) ,Z ) , l e n g t h ( Z ,N) , N
>=2.

Prolog responds with:

Z = [ [ a i r b a g t r i g g e r p 1 , sw1 p2 , sw1 , sw1 p1 ,
sw2 p1 , sw2 , sw2 p7 , a i r b a g a i r b a g p 1 ] , [
a i r b a g t r i g g e r p 1 , sw1 p2 , sw1 , sw1 p12 ,
sw2 p8 , sw2 , sw2 p7 | . . . ] ] , N = 2 .
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topic(dom_airbag,t_airbag_sensor1,periodic,250,200).
topic(dom_airbag,t_airbag_trigger,periodic,500,100).
topic(dom_airbag,t_airbag_sensor2,periodic,250,200).

qos(latency,dom_airbag,t_airbag_sensor1,airbag_sensor1,airbag_trigger,3).
qos(latency,dom_airbag,t_airbag_trigger,airbag_trigger,airbag_airbag,3).
qos(latency,dom_airbag,t_airbag_sensor2,airbag_sensor1,airbag_trigger,3).

publishes(airbag_sensor1,airbag_sensor1_p1,dom_airbag,[t_airbag_sensor1]).
publishes(airbag_trigger,airbag_trigger_p1,dom_airbag,[t_airbag_trigger]).
publishes(airbag_sensor2,airbag_sensor2_p1,dom_airbag,[t_airbag_sensor2]).

consumes(airbag_trigger,airbag_trigger_p1,dom_airbag,[t_airbag_sensor1]).
consumes(airbag_airbag,airbag_airbag_p1,dom_airbag,[t_airbag_trigger]).
consumes(airbag_trigger,airbag_trigger_p1,dom_airbag,[t_airbag_sensor2]).

switch(sw2,[sw2_p1,sw2_p2,sw2_p3,sw2_p4,sw2_p5,sw2_p6,sw2_p7]).

device(airbag_sensor1,[airbag_sensor1_p1]).
device(airbag_sensor2,[airbag_sensor2_p1]). 
device(airbag_trigger,[airbag_trigger_p1]).

isLinked(sw1_p2,airbag_trigger_p1,1000000000).
isLinked(sw1_p4,airbag_sensor2_p1,1000000000).
isLinked(sw1_p9,airbag_sensor1_p1,1000000000).
isLinked(sw2_p7,airbag_airbag_p1,1000000000).

Fig. 1. An excerpt of the LP-based model of in-vehicle network using the formally defined facts. Using inference rules, interesting properties of the network
can be verified.

It would return false if the number of disjoint paths is increased
to N >= 3.
The second example deals with the importance of egress port
sw2 p7 for airbag trigger. It has to be verified that there is
no data transmission of priority {vlan = 3}. The verification
query in Prolog is:

?− s t r e a m P o r t s ( , T , , E g r e s s P o r t s , ) , member (
sw2 p7 , E g r e s s P o r t s ) , qos ( , , T , , , 3 ) .

Prolog responds with false which means that there is definitely
no disruptive communication on this port.

V. CONCLUSION AND FUTURE WORK

A network modeling approach based on logic programming
is presented that afterwards is used to assist automotive
network engineers, during the configuration and verification
process. The uniqueness of this approach is that the whole
network model is based on logical facts and rules which leads
to more efficient configuration and verification process that
normally costs a lot of engineering effort. This work is still in
progress and we are extending the rules to model deep details
of TSN with application in automotive domain.
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