
Stochastic Model Predictive Controller with Chance Constraints for
Comfortable and Safe Driving Behavior of Autonomous Vehicles

David Lenz1 and Tobias Kessler1 and Alois Knoll2

Abstract— In this paper, we address the application of
stochastic model predictive control with chance constraints to
autonomous driving. We use a condensed formulation of a
linearized vehicle model to setup a quadratic program with
nonlinear chance constraints, which can be solved with off-the-
shelf optimization algorithms. We further show how obstacle
information in the path planning stage can be converted into
a set of linear state constraints that can be directly used in
the control algorithm. The resulting controller is potentially
real-time capable and achieves a tradeoff between safety and
comfort in its control behavior.

I. INTRODUCTION

We consider a vehicle model with stochastic disturbances,
actuator limits and chance constraint states. The actuators,
e.g. the steering wheel angle are physically limited and these
limits occur in everyday driving situations. Furthermore actu-
ator and especially sensor values are obtained with stochastic
disturbances, which yields uncertainties in the states.

In general, the controller of an autonomous vehicle re-
ceives a reference trajectory from the planning layer and does
not have direct access to obstacle information from the sensor
fusion. The planner is assumed to generate a collision free
trajectory with a certain safety margin. A Linear Quadratic
Regulator (LQR) addresses this control problem. As obsta-
cles are not taken into account directly, one has to tune this
controller to either obtain a good tracking behavior or a
comfortable parametrization. A safe parameter set accepts
high control inputs to stay as close to the reference as
possible, while a strategy aiming at driving comfort tends to
minimize the control energy. Therefore, the tracking behavior
influences the choice of safety margins in the planning
layer. A combination of both control strategies is necessary,
usually depending on the current situation. This trade-off
between tracking quality and driving comfort only serves
as an example for conflicting goals. It is desirable to include
even more (conflicting) requirements in the controller design
and to realize different behaviors for varying situations.

In this work we calculate a simplified obstacle represen-
tation in the form of state constraints that can be used in the
control algorithm. Our proposed approach, which we call
Chance Constraint Stochastic Model Predictive Controller
(CC-SMPC), includes these constraints in the problem defi-
nition and therefore is safe by design. In the parametrization
step, only comfort issues have to be taken into account.
Fig. 1 sketches the tracking behaviors and covariances of

1David Lenz and Tobias Kessler are with fortiss GmbH, An-Institut
Technische Universität München, Munich, Germany

2Alois Knoll is with Robotics and Embedded Systems, Technische
Universität München, Munich, Germany

Time [s]

St
at

e
x

Reference

Comfort LQR

Safety LQR

CC-SMPC

Fig. 1. Schematic comparison of the CC-SMPC control approach to LQR
controllers designed to be as safe and as comfortable as possible. The
hatched patches depict obstacles and the semi-transparent areas the current
error covariances.

the different controllers. Summing up, this paper addresses
the following challenges:
State constraints construction: A new method for obtaining
convex linear state constraints from obstacles
Simplified controller parametrization: Only comfort influ-
ences choice of parameters
Separation of design steps: Controller performance does
not influence planning layer directly (e.g. safety margins)
Stochastic system capabilities: A chance constraint system
in the controller design

This paper is organized as follows. In section II we give a
literature overview. Section III formally defines the stochastic
system and introduces the optimization problem. A method
for constructing state constraints is shown in section IV. The
controller design and the optimization formulation are given
in section V. Section VI states simulation results with a
single track car model and section VII concludes this work.

II. RELATED WORK

In the literature, uncertainties are often only treated in
the planning layer, as for example in [1]. The controller
is assumed to follow the generated trajectory with known
disturbances. We instead aim at dealing with the disturbances
and uncertainties in the controller itself. Similar approaches
can be found in the literature. All aim to minimize a cost
function with respect to the system dynamics equations.
From a control theory point, several approaches deal with
inequality constraints in an optimal control scenario. In [2]
the authors provide a suboptimal solution for the finite and
infinite horizon LQR problem with inequality constraints on
the system inputs and outputs.

In the literature we find several ways to approximate
chance constraints [3]. A comparison of an approximation
approach using Boole’s inequality and ellipsoid relaxation
is given in [4]. Both yield computationally solvable results,
while the Boole’s inequality approach tends to complicate
the optimization problem and the ellipsoid approximation ap-
proach yields too conservative approximations. [5] introduces
the multi-dimensional Chebyshev inequality to approximate
the chance constraints. The subset defined by the inequality
constraints is approximated by an maximum volume in-
scribed ellipsoid. The constraints tightening method [6] is
referenced by [7] to transform the chance constraint into
deterministic constraints if each constraint can be treated
individually. This is achieved by a so-called risk allocation
stage, which is another optimization algorithm. Another
approach to transform the probabilistic problem into a de-
terministic one is given by [8]. They encode the covariance
matrices in the state and include them in the optimization
problem. Note that there exist several more approaches for
the constraint approximation like the Bernstein approxima-
tion or the scenario approximation [3]. In contrast to other
work, we use the nonlinear chance constraints directly, see
section V-B. Also, we limit the chance constraints to the
system states. A more general problem formulation can be
found in [9]. Similar to the mentioned approaches above,
the chance constraints formulation and optimization is also
applied to higher level planning as in [10] or for multi-agent
control as in [11].

Many publications discuss how to minimize the compu-
tational complexity and construct or adopt a special op-
timization algorithm. [12] introduces a sparse condensed
formulation which has nice structural properties of the op-
timization problem. [13] transforms the constraint model
predictive control problem to a quadratic control problem
making use of the Moore-Penrose pseudo-inverse of the
input matrix B. The resulting problem is solved with an
interior point method. [14] constructs an efficient algorithm
to solve constraint LQR problems based on the proof that the
constructed controller is piece-wise affine. Computationally
heavy parts of the algorithm are computed offline. We aim at
using a standard optimization algorithm with an appropriate
problem structure, see section V.

III. PROBLEM DEFINITION

In this section, we first introduce the stochastic system
definition and the single-track model used in this paper.
Subsequently we formally state the optimization problem.

A. System Definition

The stochastic dynamic time-discrete model of a (mobile
robotic) system can be expressed as

x̂k+1 = f(x̂k, ûk,wk), wk ∼ N(0,Σw,k) (1)

where x̂k ∈ X̂ denotes the state, ûk ∈ Û the control input,
and wk is the error characteristics of the motion model. The
(possibly nonlinear) model described in (1) can be linearized
around a nominal trajectory (x∗

k,u
∗
k,w

∗
k = 0) given from a

motion planning algorithm. Only considering the deviations
from this reference xk := x̂k − x∗

k, uk := ûk − u∗
k, the

system can be approximatly written as

xk+1 = Akxk +Bkuk +W kwk (2)

with Ak =
∂f

∂x̂k
, Bk =

∂f

∂ûk
, W k =

∂f

∂wk
. (3)

The covariance of the deviation propagates with:

Σx,k+1 = AkΣx,kA
ᵀ
k +W kΣw,kW

ᵀ
k . (4)

Note, that we assume the control input u to be deterministic.

B. Single-Track Car Model

As a car dynamics model, we use a form of the single-
track model with steering curvature σ and the acceleration
a as control inputs. x and y denote the position of the car’s
rear axle, θ the heading. Following the notation of section
III-A, we define x̂k := (xk, yk, θk, vk), ûk := (σk, ak), and
ŵk := (w1,k, w2,k). The discretized system dynamics with
sample time ∆t can be formulated as

xk+1

yk+1

θk+1

vk+1

 =

xk
yk
θk
vk

+ ∆t

vk cos θk
vk sin θk

vk(σk + w1,k)
ak + w2,k

 (5)

x̂k+1 = f(x̂k, ûk, ŵk,∆t) (6)

and rewritten in terms of the deviations as

xk+1 = f(xk,uk,wk,∆t) . (7)

The control algorithm itself is not limited to this vehicle
model but is generally applicable for stochastic systems.

C. Optimization Problem Definition

For the system (2) we define the constrained minimization
problem

min
u1,...,uN

J(u1, ...,uN ,x1, ...xN) (8)

subject to uk ∈ Fu,k (9)

P
(N⋂
k=1

{xk ∈ Fx,k}
)
≥ α (10)

with the sets Fx,k and Fu,k

Fx,k := {xk ∈ X |ti,k,xxk ≤ si,k,x∀i ∈ [1..Mx]} (11)
Fu,k := {uk ∈ U |ti,k,uuk ≤ si,k,u∀i ∈ [1..Mu]} . (12)

α ∈ [0..1[expresses the probability all linear state constraints
are satisfied. Fx,k denotes the set of all valid states x at step
k. t and s are the parameters defining one linear constraint
and are assumed to be deterministic. (10) is probabilistic and
will be referred to as chance constraint. The cost function J
is chosen as the quadratic function

J(u1, ...,uN ,x1, ...xN) =

E

{N−1∑
k=0

(xᵀ
kQkxk + uᵀ

kRkuk) + xᵀ
NQNxN

}
. (13)

P

C1

rC2

C3

(a) Local convexification method

P1=(x,y)

P2

θ

(b) Approximation of the vehicle shape
with three circles

2

4

−2
0

2
−1

0

1

x

y

θ

(c) Constraint polyhedron

Fig. 2. Methods for creating linear state constraints for a vehicle shape. First a local convexification of the obstacle information (a) is performed for
every circular disc of the vehicle shape approximation (b). The position constraints are transformed into state constraints considering the orientation θ. The
result is a convex region (polyhedron) in the state space (c).

IV. CONSTRAINT DETERMINATION

In contrast to most control theory publications, we also
address the question where constraints originate from.

First of all, there are actuator saturations which come
from the mechanical design and are physical limits. In case
of a vehicle, this is the limited steering angle and the
limited braking and acceleration ability. These constraints
are generally constant or only changing slowly.

Secondly, state constraints exist that depend on the current
position in the environment and the obstacle geometries
around that point. These can be virtual constraints, i.e., con-
straints that a desired tracking error should not be exceeded
or physical constraints whose violation leads to a crash with
an obstacle.

Here we focus on physical state constraints, as these are
most complex but can be precalculated from a trajectory
planning layer along a reference. The transformation of
obstacles into a set of linear, convex, but time-dependent
constraints beforehand allows the optimization problem for
model-predictive control to be solved efficiently. We pro-
pose two steps to obtain the state constraints for a given
reference point x∗

k. First, a local convexification method for
position and afterwards a transformation of multiple position
constraints into a set of state constraints. This process is
summarized in Fig. 2 and explained in the subsequent
sections.

A. Local Convexification

For a local convex description of the environment for a
disc at point P and with radius r, we apply an adapted
algorithm from [15] extended for discs. The process is
depicted in Fig. 2(a) and can be described briefly as follows.
First, we find the closest obstacle to point P and draw a line
C1 perpendicular to the line connecting P and the closest
obstacle point (dotted) with distance r from the obstacle.
This yields a linear constraint. We proceed by finding the
closest point on an obstacle that is not already covered by
the existing linear constraints and repeat this process. We
proceed iteratively until all obstacles are accounted for in the

set of constraints. In [15] the authors note, that this method is
not the least conservative approximation of the environment.
As we are not limited by the method of construction for the
local convex hull, any other method can be used here as well.

B. From Position to State Constraints

We approximate the polygonal shape of the vehicle with
a series of circles with equal radius of r as shown in Fig.
2(b). For each circle, we transform the positional constraints
into state constraints. The process is presented for the circle
around P2. l denotes the distance of P1 and P2. First, we
apply the local convexification around the point P2 and get
a set of linear constraints on the position of P2. For brevity,
we omit all subscripts for the linear constraints and only
consider one constraint. We call this positional constraint
t̂P2 ≤ ŝ which is equivalent to

t̂P1 + t̂

(
l cos θ
l sin θ

)
≤ ŝ . (14)

Now, (14) includes the three kinematic states (x, y, θ) we
are interested in for collision checking, but the relationship
is nonlinear. As we are interested in the constraints along
the reference trajectory, we linearize around θ∗, apply small-
angle approximations and get

t̂P1 + lt̂

(
cos θ∗ + sin θ∗θ∗

sin θ∗ − cos θ∗θ∗

)
︸ ︷︷ ︸

constant

+ lt̂

(
− sin θ∗

cos θ∗

)
︸ ︷︷ ︸

:=tθ

θ ≤ ŝ . (15)

With an appropriate choice for s, this can be written as(
t̂, tθ, 0

)︸ ︷︷ ︸
t

x ≤ s , (16)

which is exactly the constraint form we defined in section
III-C. Note, that the last zero in (16) indicates that we are
not imposing constraints on the velocity. In a dynamically
changing environment also constraints on the velocity will
appear. Repeating this procedure for all used discs, the
resulting set of constraints form a polyhedron in the state
space. An example is shown in Fig. 2(c).

V. MODEL PREDICTIVE CONTROLLER
In this section, we reformulate the optimization problem

described in section III in order to solve it efficiently with
an off-the-shelf optimization algorithm. We use a condensed
formulation to obtain a quadratic program without con-
straints. We then show how we incorporate the nonlinear
chance constraint within the optimization. For efficiency, all
gradients and hessians are calculated analytically.

A. Block Matrix Formulation
We rearrange the equations from (4) and group them into

the condensed formulation
ξ = Ax0 + Bν +Wω
Sx = AΣx,0Aᵀ +WSwWᵀ (17)

with the vectors

ξ =

x1

x2

...
xN

 ,ν =

u0

u1

...
uN−1

 ,ω =

w0

w1

...
wN−1

 (18)

and block matrices

A =

A0

A1A0

...∏N−1
k=0 Ak

B =

B0 0 . . . 0
A1B0 B1 0 . . . 0

...
...∏N−1

k=1 AkB0 . . . BN−1

W analog to B
Sx = diag(Σx,1, . . . ,Σx,N)

Sw = diag(Σw,0, . . . ,Σw,N−1)

Q = diag(Q, . . . ,Q,QN), R = diag(R, . . . ,R) .
(19)

The cost function (13) is rewritten as

J(ν, ξ) = E{ξᵀQξ + νᵀRν} . (20)

As we aim at optimizing ν, we can eliminate ξ from the
cost function by plugging (17) into (20) and get

J = νᵀ(R+BᵀQB)ν+2xᵀ
0AᵀQBν+xᵀ

0AᵀQAx0︸ ︷︷ ︸
constant

. (21)

B. Chance Constraints Transformation and Approximation
In this section, we show how to derive inequality con-

straints from the chance constraints (10). Note, that the
expressed probabilities are valid for each state xi and per
time step k. Using the condensed formulation of (17) the
constraints can be rewritten as

P
(
ξ ∈ Fξ

)
≥ α, Fξ :

Mx⋂
i=1

{tᵀi,ξξ ≤ si,x} (22)

ν ∈ Fν , Fν :

Mu⋂
i=1

{tᵀi,νν ≤ si,u} (23)

with vectors tᵀi,ξ, tᵀi,ν being tᵀi,k,x, tᵀi,k,u respectively but
with appropriately padded zeros. As ξ is normally distributed
with a covariance of Sx, each constraint in (22) is a one
dimensional Gaussian with covariance of

σi := tᵀi,xSxti,x . (24)

Again, (22) denotes the constraints on the state, but in order
to use it in the defined optimization problem, it has to be
reformulated in terms of the input vector ν. Thus plugging
into (17) leads to

tᵀi,ξξ ≤ si,x ⇔ tᵀi,ξBν ≤ si,x − t
ᵀ
i,ξAx0. (25)

We define

si,x,ν := si,x − tᵀi,ξAx0, tᵀi,ξ,ν := tᵀi,ξB , (26)

which yields transformed chance constraints of the states in
ν. Note that the transformation in (25) does not change the
distribution of the constraint and thus the standard deviation
of each one-dimensional Gaussian stays untouched. With this
transformation (22) can be stated as

P (ξ ∈ Fξ) = P

(
Mx⋂
i=1

{tᵀi,ξ,νν ≤ si,x,ν}

)
≥ α . (27)

Using Boole’s inequality, this probability can be conserva-
tively approximated as

b(ν) :=

Mx∑
i=1

P
(
tᵀi,ξ,νν ≤ si,x,ν

)
≥ α . (28)

Following e.g. [4] we can reformulate (28) using the standard
Gaussian cumulative distribution function Φ

b(ν) =

Mx∑
i=1

(
Φ

(
si,x,ν − tᵀi,ξ,νν√

σi

))
≥ α . (29)

This yields one highly nonlinear, scalar constraint. Most prior
arts continue to linearize (29) by splitting the sum into Mx

equations and introduce one coupling inequality constraint.
We use the transformed form of equation (29) directly in the
optimization program. To improve the solver’s performance
we determine the derivate of equation (29) as

∇b(ν) =

Mx∑
i=1

(
ϕ

(
si,x,ν − tᵀi,ξ,νν√

σi

)
−tᵀi,ξ,ν√

σi

)
, (30)

where ϕ denotes the probability density function of the
standard normal distribution.

As a further optimization, also the hessian of the constraint
function can be calculated to

∇2b(ν) = ∇(∇b(ν))ᵀ =
Mx∑
i=1

(
ϕ

(
si,x,ν − tᵀi,ξ,νν√

σi

)
−ti,ξ,νtᵀi,ξ,ν

σi

)
, (31)

C. Optimization Algorithm

In order to implement the optimization problem (8) we
need the following components from the previous sections:

• the cost function from (21). The according gradient and
hessian are trivial to compute as this is a quadratic cost
function.

• the nonlinear chance constraint b(ν) from (29) with its
gradient (30) and hessian (31)

• the linear inequality constraints on the input from (23)
• currently we have no equality constraints

This is the standard form of nonlinear optimization prob-
lems and can be solved by algorithms like interior-point or
Sequential Quadratic Programming (SQP) methods.

VI. EVALUATION

To evaluate the proposed algorithm, we implement the op-
timization problem for the single-track model in MATLAB1.

A. Example 1: Comparison with LQR

0 2 4 6 8
−2

0

2

x[m]

y[
m

]

Reference

Comfort LQR

Safety LQR

CC-SMPC

Fig. 3. Comparison of the different algorithms with indicated error
covariance when entering a tunnel. The car shape shows the width of the
tunnel.

We consider a tunnel environment with a straight reference
trajectory at y = 0 as depicted in Fig. 3. As parameters,
we chose a horizon of N = 25, a chance constraint bound
of α = 0.95, and weighting matrices of Q = 1,R = 1.
As control constraints for this system, we define |σ| ≤ 0.3,
|a| ≤ 2 and a process noise with constant covariance of
Σw = diag(0.5, 0.02). We consider a fixed starting point
x0 = (−0.3, 0.8,−0.3, 0). As sampling interval ∆t we
chose ∆t = 0.05. For comparison, we take two different
parametrizations for a standard nonlinear finite-horizon LQR
and one deterministic constraint model predictive controller
(C-MPC):

• comfort LQR has the same cost function as CC-SMPC,
i.e., Qcomfort = Q and Rcomfort = R.

• safety LQR yields a better tracking behavior with
Qsafety = 5 ·Q

• C-MPC uses the same formulation as CC-SMPC but
ignores the stochasticity of the system. Thus, the chance
constraint reduces to linear inequality constraints

The simulation result for one run is depicted in Fig. 3 for
the trajectories in the cartesian plane with the associated

1with the Optimization Toolbox by The MathWorks

error covariance. The C-MPC variant has been omitted in the
picture as it is very similar to the comfort LQR. As sketched
in Fig. 1, the covariance of the safety LQR is very narrow
in contrast to the comfort LQR. The CC-SMPC follows the
behavior of the comfort LQR at the beginning, but when
entering the tunnel, the covariance region contracts. As the
controller stabilizes in the middle of the tunnel, the variance
can safely grow again.

Repeating the previous simulation for 1000 times, Table I
shows the average fail rate (i.e., percentage of runs violating
the constraints), acceleration control effort

∑
|a|, and steer-

ing control effort
∑
|σ|. First, it can be seen that the comfort-

LQR is violating the constraints repeatedly compared to the
stronger parametrization of the safety LQR. This is also
reflected in the difference in control effort. The CC-SMPC
algorithm on the other hand has costs comparable to the
comfort version, but a fail rate of 0%. This shows that the
aspired tradeoff between safety and comfort is achieved. It is
notable, that the C-MPC controller — although considering
the constraints in a deterministic fashion — has a very high
fail rate for this scenario. This shows, that considering the
random errors is indeed necessary to achieve the desired
controller behavior.

TABLE I
SUMMARY OF COMPARISON OF DIFFERENT USED ALGORITHMS

Method Fail Rate
∑

|a|
∑

|σ|
CC-SMPC 0% 114.9 18.7
LQR(comfort) 79.3% 115.4 19.1
LQR(safety) 0.2% 143.3 24.6
C-MPC 72.6% 114.0 18.8

B. Example 2: A More Complex Scenario

In this setup we consider the single track vehicle with
the same parameters as in the previous section in a parking
lot like environment. Fig. 4(a) shows the simulated vehicle
compared to the reference trajectory. It is observable that the
CC-SMPC algorithm takes a safer trajectory if the reference
is very close to the obstacles (at k = 300) but tends to
navigate back to the reference if more free space is available.
The total runtime2, depicted in Fig. 4(b), varies for each
stage and tends to be longer in constraint environments.
Nevertheless the mean runtime is below 50ms which suggests
that the approach can be optimized to operate in real time.
The CC-SMPC algorithm always shows a higher constraint
violation than the Monte Carlo sampled constraints as shown
in Fig. 4(c). This is expected as Boole’s Inequality is a
conservative approximation.

C. Evaluation of the Optimization Algorithm

Table II compares the solutions of different optimization
algorithms for the vehicle model in the tunnel environment
from section VI-A. The shown numbers are the mean values
of the computations at each state. As a baseline we con-
sider the results of the quadratic problem without chance

2measured on a Intel Xeon 2.8Ghz CPU

k = 0

k = 300

k = 450

k = 670

0 5 10 15 20

0

5

10

15

x[m]

y
[m

]

Reference

CC-SMPC

(a) Environment with reference and simulated trajectory

0 200 400 600

20

40

60

80

100

Stage

C
om

pu
ta

tio
n

tim
e

[m
s]

Setup

Optimization

Total

(b) Runtimes

0 200 400 600
0

2

4

Stage

C
on

st
ra

in
t

vi
ol

at
io

n[
%

]

Optimized

Sampled

(c) Chance constraint

Fig. 4. Analysis of one simulation run with the CC-SMPC controller in a complex environment. (a) Environment, reference, and a single simulation. At
k = 300 the controller deviates from the reference to fulfill the chance constraint. (b) Runtimes. Time to generate block matrix formulation for optimization
(Setup), optimization, and total time spent. (c) Active chance constraint calculated through optimization and computed with 5000 Monte Carlo simulations.

constraints, referred to as Quadprog. As well the SQP as
the Active Set method only yield a merely slower runtime
for the chance constraint problem. The Interior Point method
approximately needs the double amount of iterations and cost
function calls which results in a doubled runtime. Thus, the
Active Set optimization is best suited for our problem.

TABLE II
STATISTICS FOR DIFFERENT ALGORITHMS FOR ONE COMPLETE RUN

Method Runtime [ms] J # Iter # Calls J
Interior Point 21.9 5.704 4.2 6.2
SQP 12.2 5.704 2.3 3.4
Active Set 11.7 5.701 2.1 3.4
Quadprog 9.3 5.779 4.8 4.8

VII. CONCLUSION AND FUTURE WORK
We have shown how stochastic model predictive control

with chance constraints can be applied to control an au-
tonomous vehicle. We achieved a tradeoff between comfort
and tracking quality depending on the current requirements
that arise in the presence of obstacles. This simplifies con-
troller parametrization and the choice of safety margins in
the trajectory planning, as no implicit knowledge of the
tracking quality has to be encoded in the safety margins. We
can detect when safe tracking is not possible anymore and
trigger an emergency stop. We further introduced a method
to obtain locally convex linear state constraints by combining
sets of convex position constraints. The presented runtimes
suggest, that the method is applicable to a real car with
further optimization.

As future work, a feedback matrix can be added into the
optimization process. This allows CC-SMPC to run with
a lower frequency than an underlying feedback controller.
Second, the state constraint construction can be improved,
as approximating the car shape with many circles leads to
stochastically dependent constraints and Boole’s inequality is
too conservative. Additionally real-world scenarios including
other vehicles will be evaluated. The proposed approach is
capable of such situations as constraints may be added or
removed in each step. The vehicle model can be further
extended to cover e.g. control delays.

REFERENCES

[1] J. Van Den Berg, P. Abbeel, and K. Goldberg, “LQG-MP: Optimized
path planning for robots with motion uncertainty and imperfect
state information,” The International Journal of Robotics Research,
vol. 30, no. 7, pp. 895–913, 2011.

[2] M. Sznaier and M. J. Damborg, “Suboptimal Control of Linear
Systems with State and Control Inequality Constraints,” in IEEE
Conference on Decision and Control, 1987, pp. 761–762.

[3] A. Nemirovski and A. Shapiro, “Convex Approximations of Chance
Constrained Programs,” SIAM Journal on Optimization, vol. 17,
no. 4, pp. 969–996, 2006.

[4] M. Vitus and C. Tomlin, “On Feedback Design and Risk Allocation
in Chance Constrained Control,” in IEEE Conference on Decision
and Control and European Control Conference, 2011, pp. 734–739.

[5] Z. Zhou and R. Cogill, “An Algorithm for State Constrained Stochastic
Linear-Quadratic Control,” in American Control Conference, 2011,
pp. 1476–1481.

[6] J. Yan and R. R. Bitmead, “Incorporating state estimation into model
predictive control and its application to network traffic control,”
Automatica, vol. 41, no. 4, pp. 595–604, Apr. 2005.

[7] M. Ono and B. Williams, “Iterative Risk Allocation: A New Approach
to Robust Model Predictive Control with a Joint Chance Constraint,”
in IEEE Conference on Decision and Control, 2008, pp. 3427–3432.

[8] M. Shin and J. Primbs, “A Fast Algorithm for Stochastic Model
Predictive Control with Probabilistic Constraints,” in American
Control Conference, 2010, pp. 5489–5494.

[9] Y. Ma, S. Vichik, and F. Borrelli, “Fast Stochastic MPC with
Optimal Risk Allocation Applied to Building Control Systems,” in
IEEE Conference on Decision and Control and European Control
Conference, 2012, pp. 7559–7564.

[10] M. P. Vitus and C. J. Tomlin, “A probabilistic approach to planning
and control in autonomous urban driving,” in IEEE Conference on
Decision and Control, 2013, pp. 2459–2464.

[11] D. Lyons, J. Calliess, and U. D. Hanebeck, “Chance Constrained
Model Predictive Control for Multi-Agent Systems with Coupling
Constraints,” in American Control Conference, 2012, pp. 1223–1230.

[12] J. Jerez, E. Kerrigan, and G. Constantinides, “A sparse and condensed
QP formulation for predictive control of LTI systems,” Automatica,
vol. 48, no. 5, pp. 999–1002, 2012.

[13] G. M. Mancuso and E. C. Kerrigan, “Solving Constrained LQR
Problems by Eliminating the Inputs from the QP,” in IEEE Conference
on Decision and Control and European Control Conference, 2011,
pp. 507–512.

[14] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos, “The ex-
plicit linear quadratic regulator for constrained systems,” Automatica,
vol. 38, no. 1, pp. 3–20, 2002.

[15] S. Patil, J. van den Berg, and R. Alterovitz, “Estimating Probability
of Collision for Safe Motion Planning under Gaussian Motion and
Sensing Uncertainty,” in IEEE International Conference on Robotics
and Automation, 2012, pp. 3238–3244.

