
The nML Machine Description Formalism

TU Berlin Computer Science Technical Report � Updated � Revised Version ���

DRAFT

Markus Freericks

������� � �����	

Abstract

nML is a formalism targetted for describing arbitrary single�processor computer architectures� nML
works at the instruction set level� i�e� it hides implementation issues of the actual machine� nML

can be used as an input language for a wide range of tools that need formal machine descriptions�
Based on attribute grammars� nML is �exible and reasonably easy to use�

Contents

� Introduction �

��� Where are Machine Descriptions needed� �

��	 Di
erent Kinds of Machine Descriptions �

��	�� GCC�s �md format �

��	�	 The VHDL Hardware De�nition Language � � � � � � � � � � � � � � � � � � �

��� General aims of nML �

����� Abstraction Level �

����	 Sharing in Descriptions �

�� Restrictions of the Machine Model �

� Syntax and Semantics of the nML Attribute Grammar �

	�� General Description of Attribute Grammars �

	�	 nML grammars �

� The Pre�De�ned Attribute Set ��

��� Addressing Modes ��

��	 Type declarations �	

��� Memory declarations ��

�� Constants and Global Parameters �

��� Macros ��

��� execs ��

	 Attribute Expression Syntax and Semantics �

�� Expressions ��

�	 The Type of Constants ��

�� The error function � 	�

� The undefined function � 	�

�� Multiple Return Values � 	�

�� Standard Idioms for over�owing bits � 	�

�� Sequences � 	�

�� Coercion rules for assignment statements � 	�

�� Bit�Fields � 		

���� Bit Reversion using Bit�Fields � 	�

���	 The format operator and Bit �elds � 	�

��� Concatenation of Values � 	�

��� Assignment to Sequences of Locations � 	

��	 Problems with Aliases � 	�

�

� Pipelines ��

��� Pipelined Execution Model � 	�

��	 Memory Latency � 	�

��� The next Pseudo�Function � 	�

�� The Pipelined image Attribute � 	�

��� Default Settings � 	�

� The Dos and Donts of nML �

��� Top�Down� Bottom�Up design � 	�

��	 The �inner logic� of an instruction set � 	�

��� Fancy images � 	�

�� Use of canonicals � 	�

��� The danger of overspeci�cation � 	�

��� Alias Madness � 	�

��� When to use undefined � 	�

��� Errors � 	�

��� How do I model � 	�

 A complete nML description ��

� Changes from Previous Versions ��

� Appendix� Grammar of nML ��

�� Appendix� Selected Problems ��

���� Pipelines ��

���	 Interrupts �

	

Preface

The nML machine description language has been changing since its inception in December� �����
This report is a direct descendant of the �rst nML de�nition� which was printed as ���� The ��	
version of the report was included in the SPRITE 		�� progress report �	�� The changes between
the di
erent versions are recorded in section ��

� Introduction

��� Where are Machine Descriptions needed�

There are a lot of di
erent software applications where detailed formal descriptions of computer
architectures are needed� A few of these are�

� Simulators�
in the development phase of an architecture� i�e� before actual hardware exists� instruction�
level simulations are needed for writing the �rst actual programs and for testing compiler
code generation�

� Assemblers and Dissassemblers�
these programs are so simple that they ought to be easily generated automatically once a
formal description of the assembler syntax and binary coding of the instruction set exist�

� Compiler back ends�
modern compiler technology uses pattern�matched code�generation schemes� These patterns
are usually written and optimized by hand and serve as �indirect� machine descriptions� the
rest of the knowledge about the machine �e�g� pipeline behaviour and register allocation
schemes� is hand�coded into the pattern�matcher or into special allocation and optimization
passes� It should be possible to generate code�generation pattern libraries out of �functional�
machine descriptions� i�e� one that are not centered on the special needs of the code generator�
A more ambitious goal would be the generation of the whole code generator�

��� Di�erent Kinds of Machine Descriptions

Many di
erent kinds of machine descriptions are employed today� Two of the better known ones
include�

����� GCCs �md format

GCC� the GNU C compiler� can be adapted to di
erent machines by changing its machine description� �
To quote from �����

GNU CC gets most of the information about the target machine from a machine
description which gives an algebraic formula for each of the machine�s instructions� This

�At least when the machines don�t derive too much from the built�in assumptions

�

is a very clean way to describe the target� But when the compiler needs information that
is di�cult to express in this fashion� I have not hesitated to de�ne an ad�hoc parameter
to the machine description�
�����
A machine description has two parts� a �le of instruction patterns ���md� �le� and a

C header �le of macro de�nitions�
The ��md� �le for a target machine contains a pattern for each instruction that the

target machine supports �or at least each instruction that is worth telling the compiler
about��
�����
Each instruction pattern contains an incomplete RTL expression� with pieces to be

�lled in later� operand constraints that restrict how the pieces can be �lled in� and
an output pattern or C code to generate the assembler output� all wrapped up in a
�define�insn� expression�
�����
Here is an actual example of an instruction pattern� for the ���������	��

�define�insn �tstsi�

��set �cc��

�match�operand	SI � �general�operand� �rm���

��

��

�if �TARGET����� �� � ADDRESS�REG�P �operands��
��

return ��tstl �����

return ��cmpl �������� ���

RTL is the intermediate language of the compiler� A special program transforms a machine de�
scription into a C function that is used within the compiler� As can be seen in the example�
the description� while being powerful � after all� any C function may be incorporated into the
pattern�matching and expanding process �� is quite dependent on compiler internals and not very
intuitive�

����� The VHDL Hardware De�nition Language

VHDL is a language used for describing all kinds of digital circuits� among them processors and
their components� A VHDL �program� describes a circuit as a box having a number of input and
output ports either by assembling it from other� previously de�ned boxes� or by giving �the program
that executes inside� the box� When using VHDL to describe a computer architecture� usually the
whole data�path�� fetch�� decode�� load�� execute� and store�mechanism is described� In the simplest
case� the processor is seen as a black box containing a large �switch��statement� i�e� the description
really is a simulation program�

There are a number of other languages similar to VHDL� most notably the �Electronic Design Inter�
change Format� EDIF� which mainly describes the graphical layout of a circuit and has no �seman�
tic level� aside from the information about connections between prede�ned cells� and HILARICS�	�
which is mostly equivalent to a human�readable version of the �net��part of EDIF�

VHDL is described in ���� EDIF in ��� �� and HILARICS�	 in ��	�� The authors of �� specify a
hypothetical processor using VHDL� They do this by describing everything down to the timing of
the bus signals�

��� General aims of nML

In the following the main goals in the development of nML are presented together with the way of
their realization�

����� Abstraction Level

The abstraction level nML aims at is that of the instruction set� i�e� the �programmer�s model� of
the processor� To program a machine� one needs to know about

� the memory model�

� di
erent kinds of registers�

� directly supported data types�

� the exact semantics of instructions �including �side�e
ects���

� addressing modes�

� alignment restrictions�

� condition code usage and

� processor�internal data structures like pipes�

One doesn�t necessarily have to know about �system� programming details like exceptions and
interrupts� A machine description should be as precise as necessary� but not more� E�g�� in writing
a machine description for an assembler�disassembler� the semantics of instructions can be ignored
at all�

nML is based on a minimal set of assumptions about the machine� a machine� when run� executes a
program that is a series of instructions� A program counter �PC� points to the next�to�be�executed
instruction while executing the current one� A machine has state stored in memory locations� The
sole purpose of a program is to change the contents of these locations�

All that instructions do is changing the values of locations� There are no inter�instruction control
�ow constructs� the program �ow is changed by writing to the PC location� Each instruction can
be seen as a function from state to state� By composing the instructions� the semantics of the
whole program can thusly be given�� For practical reasons� instruction semantics are not given as
one function� but as a sequence of assignments of the basic form

location � function � location � � � �

A �nite set of primitive functions �arithmetic� shifting� masking� is assumed�

Traditionally� such assignment sequences are known as �register transfers�� One early register
transfer formalism was ISP� Variations of this formalism were used in retargetable code generation
��� and peephole optimization ��� systems�

�It is not that simple because of the program counter� While a semantic function of type State � State can be
given easily for any program� it is of no great value� because this function has to be applied iteratively until some
halting condition is reached�

�

����� Sharing in Descriptions

In complex architectures� there may be hundreds of di
erent combinations of operations and ad�
dressing modes� If instructions or addressing modes have side e
ects �e�g�� setting condition codes��
the semantic description of a single complete instruction may grow quite large� One goal of in the
development of nML was therefore the reduction of description size by sharing as much of descriptions
as possible�

To achieve this goal� the instruction set is enumerated by an attributed grammar� E�g� a machine
may have a dozen numeric instruction that share the behaviour of conditionally setting a �zero �ag��
This can be modelled by a grammar fragment

mem tmp�src���long
 � temporary registers

mem tmp�dst���long

� grammar rule for binary numeric operations

� SRC and DST are addressing modes� described elsewhere

op numeric�instruction�a	num�action�src	SRC�dst	DST�

action��

tmp�src�src�

tmp�dst�dst�

a�action� � execute the numeric�action

if tmp�dst��� � is the result zero�

then CZ��� � yes	 set zero flag

else CZ��� � no	 clear it

endif�

dst�tmp�dst�

�

op num�action� add � sub � ���

op add��

action��

tmp�dst�tmp�dst�tmp�src�

�

The semantic action of any instruction is composed of fragments that are distributed over the whole
grammar tree� This has been compared to the �inheritance� of object�oriented languages� in the
above example� numeric instruction is an �abstract base class� for add� sub�� � � � providing all
�shared behaviour� for the latter�

��� Restrictions of the Machine Model

No explicit provisions are made for the description of

� self�modifying code

�

� i�o devices

� interrupts

� the underlying operating system

� sub�instructions and multi�cycle�instructions�

These may be described �by hand�� E�g�� operation system calls may be modelled as instructions�

op openfd��

syntax��move ����d�� trap ��

action��canonical��fopen��a��a����

Of course� much more elegant ways to describe these concepts may be added easily� but they would
complicate the semantics a lot while not being very general� nML in its present form is a core
language that can be extended at need�

�

� Syntax and Semantics of the nML Attribute Grammar

A nML description is a �le consisting of an attributed instruction grammar� and assorted de�nitions�

��� General Description of Attribute Grammars

A context�free grammar G is a �tuple G �N� T� P� S� consisting of nonterminals� terminals�
production rules and a start symbol� A token is a terminal or a nonterminal� The set SG of Strings
in G is the set of all sequences of tokens� i�e SG �NG�TG�

�� Traditionally� �� �� � � � denote strings�
N � T and P are �nite� N � T �� S � N � P � N � SG�

A string t may be derived in one step from a string s� written s
�
�	 t i

s
 �x� � t
 ��� � �x� �� � P

A string t may be derived in n steps from a string s� written s
n
�	 t� i
 �u � s

�
�	 u � u

n��
�	 t� t

is a derivation of s �s
�
�	 t� if it may be derived in a �nite number of steps�

A string � is terminal if it consists only of terminals� i�e� i
 � � T �� A grammar is acyclic if there
exist no nonterminal x with a derivation x

�
�	 �x�� j��j� ��

The language L�G� of a grammar G is the set f�j� � TG
� � SG

�
�	 �g�

Acyclic grammars have �nite languages�

An attribute grammar is a grammar in which for each nonterminal a �xed set of attributes� and for
each production a set of sematic rules is given� For a given derivation� the semantic rules determine
the values of the attributes� A theory of attribute grammars is given in ����� �

��� nML grammars

For nML grammars� all nonterminals have to have derivations� There may be no cycles� As a
consequence� all strings that have no productions are terminal�

A nML grammar description di
erentiates between two subsets of N � N� and N�� and two sets of
production rules P� and P�� N� �N� N�N� �N� �� P� � P� P� P� � P� ��

P� is the set of production functions N� 	 TG� while P� is the set of production relations P� �
N� � N � P� models and�rules� while P� models or�rules� In an nML�grammar� there may be no
�mixed� rules�

Semantically� each terminal string produced by the grammar corresponds to one instruction in the
instruction set� By itself� such a string contains no useful information� the instruction�s syntax and
semantics are de�ned by the string�s attributes� For each attribute� its semantic function is given�
i�e� the attribute declaration declares the attribute and its de�nition in one step�

Textually� a production in P� looks like

�First described by Knuth���� in �	
��
	Full��edged attribute grammars know two kinds of attributes synthesized and inherited� If both occur together

unrestricted� attribute evaluation can become quite expensive� For nML applications� synthesized attributes should
su�ce� so inherited attributes are silently ignored�

�

op n� � n� � n� � n� � ���

while a production in P� looks like

op n��p�	t��p�	t�� ��� �

a� � e� a� � e� ���

where each ni is a nonterminal and each ti is a token� Each ai is an attribute name� the ei
their respective de�nitions� The pi are just names for the parameters to be used in the attribute
de�nitions�

Productions in P� have no attribute de�nitions� Nonterminals in N� simply pass the attributes
through�

The start symbol is �xed to be the identi�er instruction�

Attributes have expressions as their de�nitions� Expressions are arbitrary C�like expressions or
sequences of statements� Expressions may contain references to attributes of parameters� An
attribute reference param�attr refers to the value of the attribute attr of the parameter param�

What follows is a complete� if not very interesting� nML grammar�

op instruction�f	foo�g	bar�

size�f�size�g�size

op foo��

size��

op bar��

size��

this enumerates one �instruction� � which has the one attribute size with value �� In contrast� the
grammar

op instruction�f	foo�g	barOrbaz�

size�f�size�g�size

op foo��

size��

op barOrBaz � bar � baz

op bar��

size��

op baz��

size��

enumerates two �instructions� of sizes � and ��

�

� The Pre�De�ned Attribute Set

Three attributes are pre�de�ned� syntax� image and action�

The syntax�attribute describes the textual � assembler� syntax of the instruction� it has to evaluate
to a string�

The image�attribute describes the binary coding of the instruction� it has to evaluate to a binary
string� which is a string containing only �s� �s and whitespace� The latter is ignored�

The action�attribute describes the semantics of an instruction� it has to evaluate to a sequence of
register�transfer operations� The exact syntax of the latter is shown in section �

What follows is a short grammar that is complete in regard to the three pre�de�ned attributes�

type addr�card����

type long�card����

mem M�������long

mem PC���addr

op instruction � jump � binop

op jump�a	addr�

syntax�format��jump �d��a�

image�format������ ���� ���b��a�

action�� PC�a� �

mem tmp����long

mem tmp����long

op binop�x	binaction�a�	addr�a�	addr�

syntax�format���s �d��d��x�syntax�a��a��

image�format�����b ���b ���b��x�image�a��a��

action� �tmp��M�a�
�

tmp��M�a�
�

x�action�

M�a�
�tmp��

�

op binaction� plus � move

op plus��

syntax��add�

image��������

action�� tmp��tmp��tmp�� �

op move��

syntax��move�

image��������

action�� tmp��tmp�� �

��

This little grammar enumerates three instructions �or better� instruction templates��

The �rst of these has one terminal argument �a� of type addr� i�e� card����� It describes the
instruction jump x� where x may be any number between � and 	�� � ��� The semantics of the
jump�instruction is described as the sequence containing the one assignment�statement PC�a�� The
register PC has special semantics� it is assumed that during the execution of any instruction� PC
holds the address of the instruction to be executed next� So� changing PC enables an instruction
to jump somewhere else� where by default the instructions in a program are executed sequentially�
This is� indeed� the only way to manipulate control �ow�

The other two instructions� add and move� have a common description for fetching and storing ar�
guments� In the case of the move operation� there is an �unnecessary� load operation �tmp��M�a�
��
which is� however� semantically irrelevant� One can see how auxiliary registers are introduced to
facilitate code sharing� As a side�e
ect� the physical data�path is re�modeled� These auxiliary
registers don�t have any impact on the functional model of the machine� because they cannot �carry
state� from one instruction to the next � at least not in the way they are used now�

��� Addressing Modes

nML supports the concept of addressing modes� Suppose the mode declarations

mem A���long

mem D���long

mode SRC � IMMS � IMMW � IMML � REG � IND � INDOFFSET

mode IMMS�n	int�����n

syntax�format����d��n�

image�format����b��n�

mode IMMW�n	int�����n

syntax�format����d��n�

image�format����b��n�

mode IMML�n	int������n

syntax�format����d��n�

image�format�����b��n�

mode REG� AREG � DREG

mode AREG�n	card�����A�n

syntax�format��A�d��n�

image �format����b��n�

mode DREG�n	card�����D�n

syntax�format��D�d��n�

�It is important to see that this grammar does not descibe ��	 �� � ��	�� di�erent instructions� but only three to
the grammar� all terminals�types are equally opaque�

��

image �format����b��n�

mode IND�R	AREG��M�R

syntax�format����s���R�syntax�

image�R�image

mode INDOFFSET�R	AREG�O	DREG��M�R�O

syntax�format����s��s���O�syntax�R�syntax�

image�R�image

This is an incomplete subset of the addressing mode grammar of a ������ �Incomplete� because
no way exists to distinguish between modes� In reality� special marker bits would be provided by
auxiliary attributes��

One can see that the di
erence between addressing modes and �normal� grammar rules ��op� rules�
is the existence of a �value�� E�g� the AREG rule has the value A�n
� while the INDREG mode has the
�composed� value M�A�n

� Addressing modes are used as follows�

op add�src	REG�dst	REG�

action�� dst�src�dst� �

Now� if src is an AREG and dst is a DREG� this is the same as

action�� D�n
�A�m
�D�n
� �

for some values of n and m� That is� a parameter that stands for an addressing mode is replaced by
its �value��

This can be modelled by a special attribute value� Simply imagine all mode declarations trans�
formed into declarations like

���

op INDOFFSET�R	AREG�O	DREG�

value�M�R�value�O�value

and all uses of modes into

���

action�� dst�value�src�value�dst�value� �

��� Type declarations

In addition to the instruction grammar� a nML description contains declarations for memory objects�
data types� constants and macros�

A data type describes a set of values� e�g� the type card��� describes the set of numbers � � � �	���
In the grammar� data types are used as terminals �they could as well be seen as grammar rules�
i�e� card��� could denote 	�� expansions� but this would blow up the grammar without need�� nML
knows about the following type constructors�

�	

� int�n�
is the type of n�bit signed numbers in 	s�complement representation�

� card�n�

is the type of n�bit unsigned numbers�

� float�n�m�

is the type of �oating�point numbers with n bit mantissa and m bit exponent� While no
provision for NaNs and in�nities are made� a IEEE��� representation may be assumed�

� fix�n�m�

is the type of signed �xed�point numbers with n bits before and m bits after the binary point�

� �n��m
 �where n m�
is the type of �integer or cardinal� numbers in the range of �n � � �m��

� enum�id������idi�
de�nes an enumeration type� i�e� the type card�dlog

�
�i�e� and the constants id� �� � � � �

idi i� ��

� bool

denotes the boolean values� Two constants true and false are pre�de�ned� If coerced to an
integer� true has the value ��� while false has the value �� Wherever an integer is needed
�essentially� only in if�expressions�� a � will be interpreted as false� while everything else
will be interpreted as true�

A type de�nition like

type byte�card���

de�nes a synonym for a type expression�

��� Memory declarations

A memory declaration like

mem A���card����

de�nes a memory base� i�e� a set of memory locations accessible under a name and an index� A
location is a place where an value of a type may be stored� E�g�� the above shown declaration
introduces a memory base called A that contains � locations� denotable as A��
� � �A��
� which
may be used to store numbers in the range of � � � �	�� � �� Memory bases and locations are not
terminals of the grammar� in fact� they don�t exist in the grammar at all� only in the action

attribute de�nitions�

Memory declarations can have additional attributes�

mem M�������byte
 alignment��

declares an alignment restriction �if these are supported� they are not part of the core language��

��

mem A���int����

mem SP���card����
 alias�A��

declares SP to be an alias of A�� i�e� both denote the same location� but they have di
erent type
interpretations�

mem PORT����byte
 volatile��port�� alias�M��xffffff��

declares a memory location to be �volatile�� i�e� able to change at random� The value of the
volatile attribute may hold additional information for the entity that reads the description�

There is no prede�ned attribute for marking memory bases as �temporary� � in the sense of the
registers tmp� and tmp� in the �rst example � � because this property can be deduced automatically�

One last attribute is the program memory declaration� A declaration of the form

mem M������
 program�memory

declares the memory base M to be the one holding programs� Per default� the largest memory base
is assumed to hold the programs�

When modelling machines where memory is divided into di
erent purpose parts� one can combine
the program memory and the alias attributes�

mem MEM�������byte

mem PROGMEM������
 program�memory alias�MEM�����

declares the PROGMEM as part of the MEM memory base� starting at the address ��	�

The special memory base of size � pc �or PC� holds the program counter� There has to exist a PC
variable in every machine� Assignment to PC means changing the program counter and thereby
choosing a di
erent next instruction� During the execution of an instruction� the PC points to
the next instruction to be executed� By writing to the memory pointed to by the PC� one could
theoretically write self�modifying code� THIS IS NOT SUPPORTED� i�e� tools do not have to
model this behaviour faithfully�

The PC interacts with the special optional global parameter pipeline factor that determines the
number of jump delays slots�

��� Constants and Global Parameters

A declaration like

let A����

declares a global constant A to have the value ���� Such a constant might be used in every context
its value could stand� Any constant may be de�ned only once�

Constants may be used to extend nML� Any information about a machine that can be given with a
single number or string can easily be de�ned as a constant �with a default value� so that standard
nMLdescriptions still work��

�

In core nML� there is just one such constant �or �global parameter���

This is the pipeline�factor� On machines with an instruction pipeline visible to the programmer�
there are delay slots whenever a jump occurs� Usually� there is one such slot� but two are not
unheard of� A declaration

let pipeline�factor��

introduces one delay slot after each instruction that changes the program counter� The default
value is ��

��� Macros

A macro�de�nition like

macro max�A�B�� if �A� �B� then A else B endif

de�nes a pseudo�function� Macros may not introduce circularities� neither direct nor indirect! They
are of no further interest� because a simple syntactic expansion can remove them painlessly�

��	 execs

An optional functionality introduced in version ��� is that of execs� An exec is a memory location
that stores not a run�time value� but a behaviour � an exec variables holds as its value a sequence�
Execs make it possible to model pipelining behaviour� delayed writes� and other unpleasant aspects
of architectures of the more crufty persuasion�

The only operations de�ned on exec values �i�e� sequence� are store� fetch� and execute �a new
primitive function� � hence the name� Exec locations are assignment�incompatible with non�exec
locations� Exec locations have no size� An example� delayed branch�

mem branch�slot���exec
 init � ��

���

op instruction�a	rest�op�

action � � exec�branch�slot��

branch�slot���

a�action�

�

���

op branch�dst	word�

action��

branch�slot��PC � dst�

�

i�e�� the PC will be re�set as part of the next instruction� To make this well�de�ned� an initial
setting of the branch slot with a no�op ���� has to be done�

��

The value stored in the exec location has to encode two informations� the action to be performed
and the formal parameter values �in this case� the value of �a��� In this respect� an exec value is
like a function closure�

Since execs are not suited for code generation� memory latency annotations have been

introduced in version ���� From then on� execs are considered as �optional feature�

that is not part of �standard� nML�

��

� Attribute Expression Syntax and Semantics

An expression is a term that can be evaluated to a value� A value is either a logic value� a number� or
a string� Expressions are used both to compute values of attributes and as parts of register transfer
sequences in action attribute values� These really are two di
erent uses of the same expression
syntax and semantics� this dual use leads to restrictions in the set of expressions allowed as direct
values of attributes�

��� Expressions

An expression is either

� a constant like �� or �add �s���d�� Numeric constants may be written to base 	 or base ���
as in �b�������� and �x��ab�

� an attribute reference like arg��syntax�

� a memory location like PC or M���
 or A�D�x��
��
� containing the name of a memory base
and an arbitrary indexing expression �Location bases of size � can be accessed without an
index� Examples are the program counter and single condition bits���

� a function call like a�b or format���s��a�x��

� a macro application like MAX�a�b� where MAX is de�ned by a macro de�nition like
macro MAX�A�B� � if �A� �B� then A else B endif

Such a macro application can be evaluated by replacing it textually by its de�nition in the
�obvious� way�

� a conditional like if a b then x else y endif� which returns the value of the evaluated
expression�

� a switch expression like

switch x �

case �	 �load�

case �	 �store�

default	�move�

�

that evaluates to the one selected value �the selection has to be exhaustive!��

There is a list of prede�ned functions and operators�

� ���
these are the usual arithmetic functions� Applied to two numbers of type X � they return type
X � In the case of Integer�N� or Cardinal�N� arguments� all functions are de�ned modulo 	N �
Applied to Integer�N� and Integer�M� arguments� the result is Integer�max�N�M��� The same
applies for di
erent�sized Cardinal arguments� In the case of Cardinal�M� and Integer�N�

��

arguments� the result is of type Integer�max�N�M���� In the case of �oating point or �xed
point arguments� both argument types have to be the same�

� ��!��
these are the usual multiplication� division and remainder functions� In the case of Integer
or Cardinal arguments� the same rules apply as for � and �� In the case of �oating point or
�xed point arguments� mixing with integers and cardinals is allowed� the result type being
that of the �oat or �x argument�

� ��

is the integer exponentiation function� The second argument has to be a constant�

� �"� ��"�������
The standard numeric comparison functions� These may be applied to all kinds of numbers�
They return a boolean value� which is equivalent to either �� �true� or � �false��

� ""� � #� �� $
the binary shift and mask functions from C� These may be applied to Integer� Fixpoint and
Cardinal values� only� If applied to a Fixpoint�n�m�� the latter is seen as a Integer�n"m�� i�e�
no shifting is done�

� """�
Rotate right and left� de�ned on cardinals and integers�

� #mant#� exp
Select the mantissa and exponent of a �oating point number� These are represented as
integers of su�cient size� i�e� a bias��	� exponent will be represented as ��bit integer�

� #mk�oat#
Create a �oating point number from a mantissa and an exponent�

� not

The logical not� Delivered to any non��oating point value� returns ��� if the value is � and
� if its non�zero� The result type is the same as the argument type�

� ##� ��
The logic functions from C� They accept locic values and integers �� is false� and deliver
logic values�

� % The binary complement� Delivered to any non��oating point value� returns a number of
the same type that has all bits reverted�

� #� �� $
The binary functions from C� They accept non��oating point values as arguments� The

result type has the type of the longer argument� the shorter argument is �lled up with zeros
or sign�extended� respectively�

� coerce�type�expr�value�
this function� when applied to any numeric value� delivers the �best approximation� of

An over�ow is possible� �s�complement is assumed�
��s�complement for �all �s��

��

the value in the type to be coerced to� When coercing signed to unsigned� 	s�complement
representation is assumed� When coercing from �oating or �xed point numbers to integer�
everything behind the binary dot is cut o
�

� cast�type�expr�value�
Re�Interprets the value as an object of type typename� The original type of value has to be
of the same bit width as typename�

� bits�value� Returns the number of bits of the type of value� The return type is a suitably
large cardinal �say� � or ����

� canonical�string�args� � ��
or
�string��args� � ��
this function applies a function of unknown semantics� It may be used in action attribute
de�nitions only� To give an example of its use� a machine that directly implements trigono�
metric functions will need a register transfer like
dst�canonical��sin��src�

It is assumed that the entity that reads the description knows what is meant by the canonical
function� Canonical functions may only be used as �objects� in semantic attributes� they must
not be used in computing the attributes themselves!

The quote�syntax has been introduced in version ����

� format�format�string�args� � ��
This function is used to put together the string values of the syntax and image attributes�
The format string is a variation of the printf format string well known from C� It may
contain alphanumeric characters� blanks� tabs ���t��� newlines ���n��� and format directives of
the form �nC� where n is an optional �eld size and C is one of the following characters�

� d

This takes an Integer or Cardinal argument from the argument list and formats it as a
decimal number�

� b

This takes a Cardinal argument and formats it as a binary number� It may also take a
binary string� i�e� a string containing only �s� �s and �ignored� whitespace�

� x

This takes a Cardinal argument and formats it as a sedecimal number�

� s

This takes a string argument and incorporates it as a whole�

��� The Type of Constants

The type of a constant is assumed to be �of in�nite precision�� E�g�� the constant � denotes the
�ideal� cardinal �� Operations on constants preserve this� E�g�� the result of �!� is the �ideal� value
���� In a situation like

A� � D� � ��!�� � D� � ��!��

��

�which is quite unlikely to occur�� the intermediate computation is ideal� i�e� only on storing to A�
is any rounding done�

��� The error function

The pseudo�function �error� models the behaviour of the machine on encountering an illegal
state� Calling error �with an optional string argument that describes the error� results in a totally
unspeci�ed machine state� A simulator should abort the execution upon encountering error� a
compiler should try to avoid generating code that calls error�

��� The undefined function

The pseudo�function �undefind� creates an unde�ned value� Applying the function to a type will
create a unde�ned value of this type� Using undefind� nondeterministic behaviour can be modelled�
as in�

action�����

if �undefined�bool�� then ���

else ���

����

The creation of an unde�ned value does not constitute an error!

��� Multiple Return Values

As of version ���� canonicals can have multiple return values� An example of the syntax is

mem Ci���bool

mem Co���bool

mem R���int���

action�����

�R��
�Co� � �addc��R��
�R��
�Ci�

����

��	 Standard Idioms for over
owing bits

One problem often encountered is that of over�owing bits� i�e� operations that �push out� bits on
the �border�� The standard idiom to represent these bits employs the bit�concatenation operator
������� For example� to catch a bit that has been �shifted out� of a word� one could write�

mem X���bool

mem R���int���

action�����

X		R��
 � R��
""�

����

In this context� the shift�right operator will generate a ���bit result� which is then splitted into a
single bit and the ���bit main result�

	�

��� Sequences

The action attribute has register�transfer sequences as value� Such a sequence is built up from
statements� Textually� a sequence is enclosed by braces �f and g�� each statement in a sequence is
delimited by a semi�colon ����

A statement is either

� an assignment like a�b�c� where the result of an arbitrary expression is assigned to a location�

� a conditional statement� which looks like a conditional expression� but which contains two
sequences instead of two expressions�

� a switch statement� which looks like a switch expression� but which contains sequences instead
of expressions�

Sequences may contain calls to canonical function� Expressions occuring in sequences may refer to
locations�

��� Coercion rules for assignment statements

The only kind of action done by a register transfer sequence is that of assigning values to locations�
nML provides coercing rules for assignments between locations of di
erent types�

There is one main rule� assignment between locations of equal size is a direct� un�coerced operation�
Assignment between locations of di�erent size is either done with a coercion� if the types are
compatible� or not allowed�

Assume the de�nitions

type byte�card���

type sbyte�int���

type long�card����

type slong�int����

type float���float������ � �� bit mant�� � bit exp�

mem M�������byte

mem D���long

mem F���float��

in which �ve data types and three memory bases are de�ned� Let�s look at some statements using
these de�nitions�

M����
�M����
�

This simplest possible case moves a �byte� from one location to another� No coercion or casting
takes place�

D��
�F��
�

	�

Here� a ��oat�	� value is moved into a location that is tagged as �long�� Since both locations have
the same size ��	 bits�� the value is moved regardless of the incompatibility of types�

D��
�M����
�

Here� a �byte� is taken and put into a �long� register� An implicit coercion takes place� i�e� what
really happens is�

D��
�coerce�long�M����
��

In the case of coercion between signed and unsigned values� as in

mem SB���sbyte

���

D��
�SB��
�

presumably sign�extension is done� This is not guaranteed! To have guaranteed sign extension� use

mem SB���sbyte

���

D��
�coerce�slong�SB��
��

Here� a signed byte is coerced � extended� to a signed long� then the �equal size� rule takes charge
and puts the value unchanged into the unsigned location�

Lastly� something like

F��
�M����
�

is not allowed�

�� Bit�Fields

To address a sub��eld within a memory location� the syntax location"left��right may be used� For
example� to shift a �	�bit register on bit to the left� with the lsb staying the same� one can use

R��
"����� � R��
"�����

Sub�eld selection within an expression �i�e�� on the �right side� of an assignment� returns an integer
of the given size� Applied on the right side of an expression� a sub�eld speci�es a cardinal location
of the indicated size� The part of the register that is not speci�ed in the selection �in the example�
bit �� stays unchanged�

The index � means the lsb� i�e�� in integer numbers� the bit with the value of �� Negative indices
and indices that are bigger than the �eld are forbidden�

		

	���� Bit Reversion using Bit�Fields

The normal order of the indices is "lsb��msb � But� one can assume that the intuitive semantics of

R��
"����� � R��
"�����

is that of bit reversal�

	���� The format operator and Bit �elds

One can combine bit �elds with the format operator� For example� to switch the byte ordering of
a long number from ��	�� to ��	��� one can say

R��
 � format���b�b�b�b��R��
"������ �R��
"����� �R��
"����& �R��
"���� ��

The format operator� used for bit strings only� returns a string that can be interpreted as a number�

This usage is the reason for de�ning �Integer� as the return type of bitstring selection� so that� e�g�
a ����bit sign�expand to �	�bit� can be written down at

R��
"����� � format�����b��R��
"����� �

�Which could� otherwise� have been written as

R��
"������ � format����b��R��
"������ �

or� quite simple �and tricky��

R��
 � R��
"�����

�

���� Concatenation of Values

The 		 operator allows the concatenation of arbitrary expressions� it is de�ned on the left side of
assignments� too �if the expressions denote memory locations only� of course�� For example�

M��
 		 M��
 � R��

assigns the value of R�� to the locations M��� and M���� The order is the same as used in sequences
of locations� i�e�� essentially unde�ned�

	�

���� Assignment to Sequences of Locations

On most machines� addressing is per byte� while registers hold multi�byte values� Under declarations

mem M�������byte

mem D���long

an assignment like

M����
�D��
�

means to store the �long� value of D� into the sequence of byte locations M������ � �M������ While
the above sequence is not allowed in pure nML� a simple extension could be de�ned as follows� when
a global constant byte order is set to one of the strings �big� or �little�� the above statement
is de�ned when the size of the destination is a multiple of the size of the source �It is still ill�de�ned
to store a ���bit value into a byte array�� The semantics is that the source value is split up and
distributed over the indices �in this case� ��� � � ������ The order is �big�endian� �most signi�cant
byte �rst �� if byte order is set to �big�� and �little endian� otherwise�

A �rst problem arises� The semantics of

D��
�M����

should now be changed in a symmetrical way to be that of

D��
�M���������

�which is� of course� unsyntactical�� To load a byte into a long location under this changed seman�
tics� a temporary must be introduced�

mem TMPBYTE���byte

TMPBYTE�M����
�

D��
�TMPBYTE�

A second problem is that of bounds� lets assume an assignment to the top of memory�

M��������
�D��

On most machines� this will �swap over� to addresses � and �� What happens if the memory has a
size di
erent then 	N� Assume

mem X�����

X���'�
�D��

This could cause a trap or wrap around into some totally unexpected place�

A third problem is that of alignment� on aligned machines� the machine description has to provide
the information that an instruction like

	

M��
�D��

will cause an alignment exception� This information can be given as a memory attribute like

mem M�������byte
 alignment��

Or� when di
erent sizes have di
erent alignments�

mem M�������byte
 alignment�true

which could de�ne that values of size 	N�� are aligned on addresses that have the last N � � bit
cleared� The latter would� as a side e
ect� solve the problem of wrap around at the end of memory
�when the memory is of an aligned size� but any architecture missing this constraint would be truly
weird!��

As said before� multi�word memory access is not part of the core nML language�

���� Problems with Aliases

Originally� aliases were only introduced to be able to have �symbolic names� for registers �PC�SP�
or parts of memory �ZEROPAGE�INTERRUPTVECTORS�� Later� the esteemed �rst tester introduced the
trick of mapping a register to a bit array to get at the msb and lsb directly� Now� while this was not
intended� it proved to be good� so it was not explicitely forbidden in later versions of this report�
But problems still exist� The main one is the order of bits in memory �just the same problem as
with multi�word memory access� really�� given declarations like

mem M�������long

mem MBITS�bits�long����������bool

what will an action like

M��
 � �x��'a

MBITS��
�MBITS��

result in� In di
erent machines� ��'a may be represented in memory directly� or as 'a��� or as
a'��� or as ��a'�

As it stands now� the above given action sequence is not well de�ned� And this is� in my opinion�
the best way� It is trivial to introduce ad�hoc parameters like

let byte�order � ������

to cope with any such problem when it occurs� but there is no simple general way to solve this
nasty little problem� It will usually be much simpler to just avoid any such ambiguities by writing
clean de�nitions�

	�

� Pipelines

In version ���� the pipelining model � which consisted of the sole pipeline��factor in previous
versions � has been extended and speci�ed�

��� Pipelined Execution Model

��� Memory Latency

��� The next Pseudo�Function

��� The Pipelined image Attribute

��� Default Settings

	�

	 The Do
s and Don
ts of nML

Practice has shown how easy it is to write machine speci�cations that are hard to understand
both for a human reader and for an analysis program� The following section shall establish a few
guidelines for writing nML descriptions�

	�� Top�Down� Bottom�Up design

	�� The �inner logic� of an instruction set

	�� Fancy images

	�� Use of canonicals

	�� The danger of overspeci�cation

	�	 Alias Madness

die von georg gebauten konstruktionen����alias auf alias auf alias �$ ideal� alias nur von groesseren
auf kleinere� keine element�uebergreifenden aliase

	�� When to use undefined

	�� Errors

	� How do I model � � � �

	�

� A complete nML description

In the following� a complete nML description of a simple RISC�like machine is given� While being
quite small� additional complexity is introduced through complex addressing�modes�

� small�m ��� description of a small� fictional machine

let REGS�� � �$� registers

type word�card���

type long�card����

type index�card�REGS� � register index type

mem M�������long
 � main memory

mem R����REGS�long
 � registers

mem CZ���bool
 � condition code

mem CN���bool
 � bits

mem PC���long
 � program counter

� � kinds of addressing modes	 short �& bit� and long �� bit�

� short	

� name Image Syntax

� MEM �nnnn �Rn�

� REG �nnnn Rn

� long	

� ��"short

� IMM �iiiiii �x �in the range ��������

� INC ���nnnn �Rn��

� DEC ���nnnn ��Rn�

� post�increment and pre�decrement are modelled by attributes

mode MEM�i	index��M�R�i

syntax�format���R�d���i�

image�format�����b��i�

mode REG�i	index��R�i

syntax�format��R�d��i�

image�format�����b��i�

mode SHORT � MEM � REG

mode LSHORT�s	SHORT� � s

syntax�s�syntax

image�format�����b��s�image�

pre��� � these dummies have to be inserted to

	�

post��� � make the attributes defined for all LONGs

mode IMM�n	int����n

syntax�format����d��n�

image�format����b��n�

pre���

post���

mode PRE�r	MEM��r

syntax�format����s��r�syntax�

image�format�������b��r�image#�b����� � remove tag bit

� the removal uses the fact that bit strings are just

� numbers with a field size� so arithmetic operations

� like masking can be used on them

pre�� r�r��� �

post�� �

mode POST�r	MEM��r

syntax�format���s���r�syntax�

image�format�������b��r�image#�b����� � remove tag bit

pre�� �

post�� r�r��� �

mode LONG � LSHORT � IMM � PRE � POST

op instruction�x	instr�action�

action�� � these are the actions done in

� each instruction

R��
��� � R� holds � constantly

x�action� � here the different actions are inserted

�

syntax�x�syntax

image�x�image

op instr�action � control�op � alu�op � move�op

op control�op � test�op � branch�op

� jsr�op � rts�op

op test�op�src�	LONG�src�	SHORT�

action��

src��pre�

CZ�src���src��

CN�src�"src��

src��post�

�

syntax�format��cmp �s��s��src��syntax�src��syntax�

	�

image �format������ �b �b��src��image�src��image�

type testcode � enum�tr� � true

zc�zs� � CZ clr!set

nc�ns� � CN clr!set

op branch�op�newpc	LONG�code	testcode�

action��

newpc�pre�

if code��tr

���code��zc ## CZ����

���code��zs ## CZ����

���code��nc ## CN����

���code��ns ## CN����

then PC�newpc�

endif�

newpc�post�

�

syntax�format��b�s ��s���switch�code��

case tr	 �ra�

case zc	 �eq�

case zs	 �ne�

case nc	 �mi�

case ns	 �pl�

��newpc�syntax�

image �format������ ���b �b��code�newpc�image�

op jsr�op�nextpc	LONG�link	SHORT�

action��

nextpc�pre�

link�PC�

PC�nextpc�

nextpc�post�

�

syntax�format��jsr ��s���s��nextpc�syntax�link�syntax�

image �format������ �b �b��nextpc�image�link�image�

op rts�op�link	LONG�

action��

link�pre�

PC�link�

link�post�

�

syntax�format��rts ��s���link�syntax�

image �format������ �b��link�image�

mem SRC����long
 � temporary registers

��

mem SRC����long

mem DST���long

op alu�op�src	LONG�dst	SHORT�aa	alu�action�

action��

src�pre�

SRC��src�

SRC��dst�

aa�action�

dst�DST�

src�post�

�

syntax�format���s �s��s��aa�syntax�src�syntax�dst�syntax�

image �format����b �b �b��aa�image�src�image�dst�image�

op alu�action� a�add � a�sub � a�and � a�or � a�mult � a�div � a�rem

op a�add��

action�� DST � SRC� � SRC�� �

syntax��add�

image������

op a�sub��

action�� DST � SRC� � SRC�� �

syntax��sub�

image������

op a�and��

action�� DST � SRC� # SRC�� �

syntax��and�

image������

op a�or��

action�� DST � SRC� � SRC�� �

syntax��or�

image������

op a�mult��

action�� DST � SRC� � SRC�� �

syntax��mult�

image������

op a�div��

action�� DST � SRC� ! SRC�� �

syntax��div�

image������

��

op a�rem��

action�� DST � SRC� � SRC�� �

syntax��rem�

image������

op move�op � move � store � lconst � sconst

op move�src	LONG�dst	SHORT�

action��

dst�src�

�

syntax�format��move �s��s��src�syntax�dst�syntax�

image �format������ �b �b��dst�image�src�image�

op store�src	SHORT�dst	LONG�

action��

dst�src�

�

syntax�format��move �s��s��src�syntax�dst�syntax�

image �format������ �b �b��src�image�dst�image�

op lconst�dst	REG�value	long� � the only ��word�instruction

action��

dst�value�

�

syntax�format��move ��d��s��value�dst�syntax�

image �format������ �b ������� �b��dst�image�value�

op sconst�dst	SHORT�value	int����

action��

dst�coerce�int�����value��

�

syntax�format��moveq ��d��s��value�dst�syntax�

image �format������ �b �b��dst�image�value�

�	

� Changes from Previous Versions

Changes between version ��	 and version ��� �Version ��� was internal��

� new unary operator ��� �needed for IEEE �oating point since �� � �� ��

� changed �$� to ����

� new binary operators �$� �exclusive�or� and �$$� �logical exclusive�or�

� numerous typo �xes

Changes between version ��� and version ��	�

� Delayed evaluation via %exec% locations�

� new operator� concat ��verb#��#�� both as left� and right�value

� new operator� sub�eld �verb#&from���to$#� both as left and right�value

Changes between version ��� and version ��	�

� �TODO� Andi meint� es waer �verworfen�� new operator sign� Takes one argument� gives
the sign �� positive� � negative�

� �TODO� syntax�change� switch ��� �case ���� default ��� end

� �TODO� syntax�change if ��� then ��� else ��� end

� �TODO� syntax�change� �coerce�type�expr�� can now be written as �type�expr�� werden

� �TODO� Clari�cation� �mem�addr�&from��to$� is the same as �mem�addr�&to��from$�

� �TODO� Extension� �mem�addr�&from��to$� with from and�or to negative� addresses from
the front� �� is the MSB� �	 the second�most signi�cant bit� ��wordlength� the LSB�

� �TODO� removed� delayed evaluation via %exec% locations� �Too complex�

� �TODO� pipelining model that employs latency annotations for memory locations�

� ��� multi�cycle instructions via next��� canonical

� ��� new image separator � to indicate load latencies

� �TODO� more precise semantic de�nition for ���� ���� ���� �!�� ���� �""�� � �

� �TODO� de�nition of standard idioms for carry and over�ow extraction

� new pseudo�functions� undefined�type�� error��

� new operators� � � �rotate right�� �"""� �rotate left�

� new �oating�point operators� �mant�� �exp�� �mkfloat�

��

� ��� operator attributes

� ��� statement attributes

� ��� optional net list declarations

� ��� timing declarations as attributes to net list identities

� ��� simpli�cation of casting system �cast�coerce and explicit�implicit rules�� bit alignment

� introduction of �encoding� attribute for types� introduction of encoding�cast rules etc�

� ��� general boolean primitives speci�ed as tables

� ��� general bit�connect primitives speci�ed as tables

� ��� new literal type� prede�ned lookup�table

� ��� extra�nML� convention for de�ning the semantics of canonicals as a C library intra�nML�
canonical attributes�

� simpli�ed syntax for canonicals ��sin��x� instead of canonical��sin��x�

The following will be probably be part of the version 	���

� ��� multiple�output operations

� ��� idioms for multiple�sized processors �byte�word�long instructions�

�

 Appendix� Grammar of nML

What follows is a kind of typed EBNF grammar� An annotation like foo bar means that �foo� is of
type �bar�� �X�� means �a sequence of � or more Xs�� X j Y means �either X or Y �� �X � means
�one X or nothing��

machine�description �
�memory�spec
j type�spec
j mode�spec
j op�rule
j let�def
j macro�def ��

memory�spec �
mem namemem type � expr card � name type
 �mem�attribute�

�

mem�attribute �
volatile � expr string

j alias � location

type�spec �
type name typespec � expr typespec

expr typespec �
bool

j int�expr card�

j card�expr card�

j fix�expr card�expr card�

j float�expr card�expr card�

j �expr int �� expr int

j enum�i card� � �i card�

expr type �
const type
j location type

j function�application type

j if expr bool then expr type else expr type endif

j param�name�attrib�name
j switch�expr select�type�

f
��case const select�type j default� 	 expr type�

�

g

function�application type �
name type������typen� type �expr type�� � � �� expr typen�
j expr type� name type��type��type expr type�

��

location type �
namemem type�expr card

j namemem type
�

name int�int� int �
� j � j � j div j mod

name card�card� card �
j � j $ j j "" j ��

name bool�bool� bool �
j ��

name bool� bool �
not

name type�type� bool �
 � j j "� j " j �� j ��

name format�string�type�����type� string �
format

name type�specifier�type� specified type �
coerce

op�rule �
and�rule
j or�rule

or�rule �
op name op � id op � � � � � id op

and�rule �
op name op � id param � name typespec �� � �� id param � name typespec �

	

�attribute�def ��

mode�spec �
mode�and�rule
j mode�or�rule

mode�or�rule �
mode namemode � id mode � � � �� id mode

�This abbreviation �x � x���� is only valid if x denotes a memory base of size ��
The parameter list may have length ��

��

mode�and�rule �
mode namemode � id param � name typespec �� � �� id param � name typespec � ��expr �

�attribute�def ��

attribute�def �
name attr � �expr j sequence�

sequence �
�statement���

statement �
location type��expr type�

j if expr bool then sequence �else sequence� endif
j switch� expr select�type �

f
��case const select�type j default� 	 actions��

g

let�def �
let name type�expr type

macro�def �
macro namemacro� param �� � �� param� � expr

��

�� Appendix� Selected Problems

This appendix shall show how concepts like data pipelining and interrupts� which are not directly
supported� can be modelled by adding constant preambles and postludes to each instruction� i�e�
by giving the root of the instruction tree an extra preamble �and�or epilogue� that contains a
description of the �additional machinery� that �runs parallel� to the machine�

���� Pipelines

Consider a machine with a ��cycle multiplication� How may this be modelled� Lets assume a ��
bit ' �� bit multiplication with a �	�bit result in a register pair� This is written down as

mult D��D��D�

and has the semantics �compute D�'D	 and put the result into the register�pair D��D�� The
storing of the result shall occur � cycles later� i�e� in the program

move ���D�

move ���D�

mult D��D��D� � start multiplication���

add ���D� �

move D��D� � D���

move D��D� � D���

� now the multiplication results are transferred to D��D�

move D��D� � move the high word of D��D� to D�

So two tasks have to be modelled� �rst the computing over a time of � cycles� and then the storing�
Assuming that the multiplication is fully pipelined� one could write something like

mem D���word
 � a few registers

mem mult�dst����card���

mem mult�dst����card���

mem mult�dst����card���

mem mult�dst����card���

mem mult�flag����bool

mem mult�flag����bool

mem mult�flag����bool

mem mult�flag����bool

mem mult�output����long

mem mult�output����long

mem mult�output����long

mem mult�output����long

��

op instruction�i	rest�instruction� � root of the instruction tree

action��

mult�flag���� � no multiplication started

i�action�

if mult�flag� then

D�mult�dst�
�mult�output� �� � high word

D�mult�dst���
�mult�output� # �xffff� � low word

endif�

mult�output�� mult�output�� � advance pipeline

mult�dst� � mult�dst��

mult�flag� � mult�flag��

mult�output�� mult�output��

mult�dst� � mult�dst��

mult�flag� � mult�flag��

mult�output�� mult�output��

mult�dst� � mult�dst��

mult�flag� � mult�flag��

�

op rest�instruction � ��� � mult � ��� � many different operations�

� amongst them mult

op mult�x	card����y	card����dst	card����

action��

mult�output��D�x
�D�y
�

mult�dst��dst�

mult�flag��true�

�

How does it work� The pipeline is modelled by � sets of registers� one modelling the data part
of the pipeline� the second one remembers the destination register� the third one �ags whether
a multiplication is going on at all� The �mult� operation multiplies the contents of the registers�
inserts the result into the �rst step of the pipeline� stores the destination register� and sets the
�ag� Now� at the beginning of each instruction� the multiplication pipeline is advanced one step
�regardless of whether it is �lled or not�� So� the cycles go as follows�

mult D��D��D� mult�output��D��D��

mult�output��mult�output�

��

add ���D�

mult�output��mult�output�

��

move D��D�

mult�output��mult�output�

��

move D��D�

D��D��mult�output�

��

move D��D�

��

How does one model a not�pipelined multi�cycle operation� One way is to use a counter instead of
a pipeline structure�

mem D���word

mem mult�reg���long

mem mult�cnt���card���

mem mult�dst���card���

op instruction�i	rest�instruction�

action��

i�action�

if mult�cnt��� then

D�mult�dst
�mult�reg �� � high word

D�mult�dst
�mult�reg # �xffff� � low word

endif�

if mult�cnt �

then mult�cnt�mult�cnt��

endif�

�

op rest�instruction � ��� � mult � ���

op mult�x	card����y	card����dst	card����

action��

mult�cnt���

mult�reg�x�y�

mult�dst�dst�

�

Here� a mult cnt of � marks an inactive pipeline� If the pipeline is active and the count is on ��
the value is stored�

���� Interrupts

One can model interrupts in about the same way as pipelines� Assume an interrupt register that
may hold a value of � or an interrupt number that serves as index into some vector array stored at
address 	���

mem interrupt�register���card���
 volatile��irq�

op instruction�i	rest�instruction�

action��

i�action�

if interrupt�register���

then STORED�PC�PC�

PC�M�interrupt�register""���x���
�

�

interrupt�register���

endif�

�

The interrupt�register is marked as �volatile�� i�e� �changing its value�� If some non�� value
appears� the PC is stored in some intermediate location �or put on the stack or whatever� and
changed to the address found at the index� Of course� on a real machine much more happens� the
current CPU state is stored� special mode bits are set� interrupts may be masked� etc�

�

Index

byte order�not core�� 	�
instruction� �

action� ��
adressing modes� ��

example of� ��
alias� �
aliases

problems with them� 	
alignment� �
assignment� 	�

coercion rules� 	�
of sequences� ��
to exec locations� ��
to sequences �not core�� 	�

attributes
prede�ned� ��
action� ��
image� ��
syntax� ��
value� �	

bit �elds� 	�

code
self�modifying� �

coercion rules� 	�
conditional statement� 	�
constants� ��

Exec� ��
extension

by introducing constants� ��

functions
prede�ned
� ���
#� ��
##� ��
""� � #� $� ��
"""� � ��
$� ��
bits� ��
canonical� ��
cast� ��
coerce� ��

format� ��
not� ��
%� ��
��� ��
��!� ��
���� ��
		� 		
"x��y � 		
Bit�Fields� 		
exec� ��

global constants� ��
global parameters� ��
global paremeters

byte order�not core�� 	�

i�o devices� �
Index� �
instructions

jump� ��
multi�cycle� �

interrupts� �� ��

Location� �

Machine Model
Restrictions of� �

macros� ��
marker bits� �	
Memory

Base� �
Location� �

memory
attributes� �
alias� �
alignment �not core�� �
program memory� �
volatile� �

declaration� ��

operating system
support for� �

parameters
pipeline factor� �� ��

PC� �

	

PC register� ��
pipelines� �
program memory� �

register�transfer operations� ��
rules

for coercion� 	�

selection
of Bits within a Location� 	�

sequences� 	�
assignment of� ��

special ops
instruction� �

statement
if� 	�
switch� 	�

switch statement� 	�

tag bits� �	
type

bool � bit�� ��
card� ��
declarations� ��
de�nition� ��
enum� ��
�x� ��
�oat� ��
int� ��
subrange� ��

types
opacity of� ��

volatile� �

�

References

��� Markus Freericks�
The nML Machine Description Formalism�
Forschungsberichte des Fachbereichs Informatik Nr������

�	� Markus Freericks�
The nML Machine Description Formalism �updated Version ��	��
in� ESPRIT�II Project 		�� SPRITE Progress Report �Incl� Addendum 	 to T�A� �� for Period
June ���	�November ���	� Report No� PR��	� �� Dec� ���	� Author� SPRITE Consortium�
Editor� Patrick Pype �Project Manager�

��� A� Fauth� M� Freericks� A� Knoll�
Generation of Hardware Machine Models from Instruction Set Descriptions�
in� VLSI Signal Processing� VI� Eggermont et�al� �eds�� IEEE Signal Processing Society� ����

�� Peter J� Ashenden�
The VHDL Cookbook
First Edition� July ����
Dept� Computer Science� Univ� of Adelaide� South Australia

��� CAD Language Systems Inc�
VHDL Language Reference Manual
Draft Standard �����A� �� December ����

��� R�G�G� Cattell�
Automatic Derivation of Code Generators from Machine Descriptions� in� ACM Transactions
on Programming Languages and Systems 	�	�� April ����� pp� �������

��� J�W� Davidson and C�W� Fraser�
The Design and Application of a Retargetable Peephole Optimizer� in� ACM Transactions on
Programming Languages and Systems 	�	�� April ����� pp� ����	�	

��� Edif Steering Committee�
EDIF Speci�cation Version �����
June ����

��� Edif Steering Committee�
EDIF Electronic Design Interchange Format Version 	�
�
 Draft
December ����

���� Gilberto File�
Theory of Attribute Grammars
Ph�D� thesis� Technische Hogeschool Twente� ����

���� D� Knuth�
�Knuths attribute grammar paper� CACM anno ���� it was� i think��

��	� Robert Severyns� Eric Willems�
HILARICS�	� The Language
December �� ����� Preliminary Release V���

���� Richard M� Stallman�
Using and Porting GNU CC
version tagged as �last updated �	 September ����� for version �����

�

