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1. Extended Abstract

In this abstract, we mention some challenges and
preliminary solutions toward designing robotic soft-
ware with verifiable safety. We use a 2D planar robot
as example (fig. 1-a), which has an arm with fixed or
moving base. Also, computational stereo for precise
(or imprecise) location of the object or obstacle is
assumed. Our simple scenario is to perform object
retrieval, but safety requirements should be assured,
for example, to avoid moving obstacles.

1.1. Challenge A: Definition of Safety

In the verification community, safety is the answer
of the state reachability problem, but in robotics the
concept of safety is coarse. Consider a case where
during robot operation, an obstacle (e.g., a human)
intentionally hits the robot, while the robot has tried
its best to perform avoidance. From the view of verifi-
cation safety, the previous case has two interpretations:
(1) The environment behavior is underspecified. (2) It
is not the responsibility of the robot. Two suggestions
are thus proposed for the use of consensus languages
in both verification and robotic communities.

Suggestion 1: For safety design in robotics, if pos-
sible, we should try to specify some behavior of
the changing environment using negations to avoid
underspecification1.

Suggestion 2: Safety is based on responsibilities -
either the robot or the environment should be respon-
sible for system unsafety2. Verification only guarantees
the safety within the robot’s responsibilities.
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1. A sample behavior can be described as follows: the object will
NOT occur within the range of 2 cm from the end-effector without
being previously sensed by the sensor in 1ms.

2. Back to footnote 1, when in operation the object violates its
rule and hits the robot, it is NOT the robot’s responsibility. But for
any other hitting, it IS the robot’s responsibility.
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Figure 1. A robot performing obstacle avoidance
(a), and the conceptual robot controller (b).

1.2. Challenge B: Predictable and Verifiable
Controllers and Algorithms

The primary gap between robotics and verification
is that continuous time and an infinite variable domain
are widely used in robotics, but they lead to intractable
results in verification. Nevertheless, safety can be
checked by overapproximation3, and the new problem
is to design the software (controller and algorithm)
such that overapproximation (e.g., trajectories) can be
achieved easily. We think of two approaches.

1.2.1. Method 1: Overapproximation of existing
algorithms. We only mention the main challenge for
this approach: it is difficult to establish the mapping
between abstract and concrete domains. Consider sim-
plified cases where the robot understands the current
obstacle position x̃, its own position ỹ, and generates

3. For example, if we overapproximate the trajectory of the end-
effector as a combination of boxes moving over time, our hand will
not touch the end-effector if we do not touch the box.
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the next robot position ỹ′; x̃, ỹ, and ỹ′ are sets of
parameters in floats. Let Dx represent the domain of
variable x. If verification operates on a finite integer
domain, then model checking should work on abstract
values x̃abs, ỹabs, and ỹ′

abs of x̃, ỹ and ỹ′. To do
this, we must find two binary relations Rx, Ry over
Dx̃ × Dx̃abs

and Dỹ × Dỹabs
, and an abstract algo-

rithm fabs(x̃abs, ỹabs), such that ∀x̃, ỹ, x̃abs, ỹabs, if
(x̃, x̃abs) ∈ Rx, (ỹ, ỹabs) ∈ Ry , then (ỹ′, ỹ′

abs) =
(f(x̃, ỹ), fabs(x̃abs, ỹabs)) ∈ Ry . Since f(x̃, ỹ) is very
complicated in general with continuous mathematical
operations (e.g., sine or cosine functions), the above
goal is almost unlikely to be achievable.

1.2.2. Method 2: Discretized algorithm design with
continuous smoothing. Intuitively, this approach re-
verses the process. We design a discrete controller
(thus verifiable) which implements the algorithm
fabs(x̃abs, ỹabs). Every input is translated into dis-
cretized move for decision making, then the real output
is further smoothed without losing the guarantee of the
location offered by the discretized controller.

For the example in fig. 1-a, we illustrate our ap-
proach with controller in fig. 1-b. Two modes are used
based on criticality. If an obstacle is far from reach,
then ordinary continuous control and motion planning
algorithms are applied for optimality. Safe mode with
discretized controller is used for obstacle avoidance
while tries its best to fetch the object. Now we consider
the safety case.

1) First, sensor data are further processed into dis-
cretized values (boxes) by the discretizer, and
the controller (or algorithm) makes the decision
based on boxes. For the controller, at time t1
it locates itself in the box b1

4, and senses the
stone in box b6. With the prediction that the
stone will proceed over box b7 and b8, it decides
that it should proceed with the following boxes
b2, b3, and b4 for time t2, t3, and t4. The
trajectory is then generated based on the box-
timing constraints; the robot should generate its
trajectory to satisfy the constraint that for all i,
at time ti, it is within box bi.

2) After the decision is made, (for example, to move
from box b1 to b4 with timing constraints), the
smoothing component generates the path. Since
computation for previous steps needs time, the
smoothing component should be able to calibrate
and compensate the effect on the elapse of time.

In this way, robot safety can be partially guaran-

4. At t1 only box b1 is drawn containing the robot arm and the
end-effector for simplicity reasons.

teed by verifying the discretized controller; the actual
system behavior is constrained by over-approximation
with box elements5.

2. Preliminary Experiments

Some concepts of discretized control for robotic
systems are preliminarily prototyped using the Ptolemy
II software [3], and the iRobot Create is used as
the implementation platform. For details, see [1]6.
The constructed system is simple: it does not have
smoothing abilities, and the environment is static. With
accelerometers and edge-detection sensors attached,
the verified controller is guaranteed to climb up hill
without falling off the edge.

3. Conclusion and More Challenges

Our contribution is as follows:
1) We try to mediate the gap between robotic safety

and verification safety by proposing the concept
of responsibility.

2) We tailor freely-designed methodologies in
robotics to fit the theoretical limit of verification.

We outline several unconsidered challenges.
1) In 3D, even with discretized space and over-

approximation, the state space is still too large
for verification engines.

2) In robotics, sampling-based algorithms are com-
monly applied to reduce computational complex-
ities. For these algorithms, introducing proba-
bilistic model checking is needed.

3) An appropriate overapproximation for the body
of the robot in discretized space can be chal-
lenging considering granularity7. Also, modeling
dynamic behavior of the environment is difficult.
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5. Of course, it requires further assumptions regarding the cor-
rectness of other components (e.g., predictable timing).

6. Video: http://www.youtube.com/watch?v=4JXj7oJyLg8
7. Our work in iRobot applies C-space approach [2] such that the

round robot can be shrunk into single point.
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