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Due to the efficient resource usage of integrating tasks with different criticality onto a shared platform,
the integration with mixed-criticality tasks is becoming an increasingly important trend in the design of
real-time systems. One challenge in such a mixed-criticality system is to maximize the service for low-
critical tasks, while meeting the timing constraints of high-critical tasks. In this article, we investigate how
to adaptively manage the low-critical workload during the runtime to meet both goals, that is, providing
the service for low-critical tasks as much as possible and guaranteeing the hard real-time requirements
for high-critical tasks. Unlike the previous methods that enforce an offline bound towards the low-critical
workload, runtime adaption approaches are proposed where the incoming workload of low-critical tasks is
adaptively regulated by considering the actual demand of high-critical tasks. This actual demand of the
high-critical tasks in turn is adaptively updated using their historical arrival information. Based on this
adaption scheme, two scheduling policies, namely the priority-adjustment policy and the workload-shaping
policy, are proposed to do the workload management. In order to reduce the online management overheads,
a lightweight scheme with O(n · log(n)) complexity is developed. Extensive simulation results are presented
to demonstrate the effectiveness of our proposed workload management approaches.

Categories and Subject Descriptors: D.4.1 [Process Management]: Real-Time Task Priority Assignment

General Terms: Workload Management, Online

Additional Key Words and Phrases: Workload management, mixed-criticality systems, real-time event
streams, real-time interface, workload bounding

1. INTRODUCTION
Nowadays, the integration of tasks with different levels of criticality onto a shared
hardware platform is becoming more and more important as this integration can
increase the resource utilization and reduce the hardware cost. Particularly, in the
traditional safety-critical avionics and automotive domains, the system is evolving into
a mixed-criticality system (MCS) by which the stringent non-functional requirements
w.r.t. cost, space, weight, heat disspation and power consumption must be met [Burns
and Davis 2015]. For example, an unmanned aerial vehicle often integrates high-
critical tasks, such as flight control, with low-critical tasks (like the mission tasks),
together into a same processor.

The schedule of a MCS is recently priority-based, where the low-critical tasks are
set with high priorities in order to improve their QoS. To guarantee the execution of
the high-critical tasks, the high-priority low-critical tasks are constrained within a
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certain bound [Wandeler et al. 2012; Phan and Lee 2013; Tobuschat et al. 2014]. When
their execution demand exceeds this bound, either the executions are delayed by a
regulator [Wandeler et al. 2012] or the execution priorities are exchanged with the
high-critical tasks [Tobuschat et al. 2014]. Nevertheless, computing such a bound for
the low-critical tasks is nontrivial as the bound on the one hand should be sufficient to
guarantee the execution of the high-critical tasks and on the other hand should not be
too pessimistic to improve the QoS of low-critical tasks.

There is related work in the literature to offline compute a workload bound by
which the incoming workload of the low-criticality is shaped at runtime. Wandeler
et al. [Wandeler and Thiele 2005; Wandeler et al. 2012] proposed to use the Real-Time
Interface to obtain the shaping bound and suggested to delay the non-real-time events
when they exceed the precomputed bound. With the computed shaping bound, the
work in [Neukirchner et al. 2012; Neukirchner et al. 2013b] discussed in more details
on how to monitor the low-critical events by switching the workload bound distribution
among low-critical tasks, or by using the workload arrival curve to monitor the whole
group of low-critical events. Tobuschat et al. [Tobuschat et al. 2014] presented a scheme
that exploits the throughput and latency slack of critical applications, by prioritizing
non-critical accesses over critical accesses and exchanging the priorities when the non-
critical workload exceeds the pre-computed bound.

The feasible bounding parameters in the aforementioned related work are obtained
offline, i.e., the bound used to shape the workload of the low-critical tasks is
computed offline and fixed during the runtime. This bound is computed based on the
assumptions of the worst-case event arrival patterns of all high-critical tasks. While
using the worst-case assumption during the runtime can guarantee the safeness of
the workload bound, it also introduces the pessimism due to the differences between
the actual demand and the assumed worst-case demand of the high-critical tasks.
Such pessimism will significantly hamper the QoS of low-critical tasks and reduce
the overall system utilization. To reduce the pessimism, the shaping bound should be
adaptively computed at runtime based on the actual demand from the high-critical
tasks. Such online adaption is however not so easy. On the one hand, the actual
demand should be a valid upper bound that guarantees no high-critical tasks miss
their deadlines. On the other hand, the adaption decisions should be lightweight.
While most of the previous work relies on the heavy numerical computation, to the
best of our knowledge, no work so far has considered adaptively refining the feasible
workload bound at runtime.

Being aware of this, this article proposes to adaptively refine the bound of
constraining the low-critical tasks at runtime. By using historical knowledge of the
arrival workload in the past, the feasible bound for the low-critical tasks is dynamically
refined. Based on the refined bound, the priority-adjustment policy and workload-
shaping policy are proposed to manage the low-critical workload in order to provide
the service for low-critical tasks as much as possible, while guaranteeing sufficient
service for meeting the hard real-time constraints of high-critical tasks. The detail
contributions of this article are as follows:

— We present an adaptive scheme for the online bound refinement in MCSs. By
monitoring the arrival events of high-critical tasks, the actual demand is adaptively
computed to shape the workload of the low-critical tasks at runtime. The computed
actual demand can guarantee that the high-critical tasks meet all their deadlines,
while at the same time increase the QoS of low-critical tasks.

— Two online workload management policies, namely, priority-adjustment policy and
workload-shaping policy, are investigated. The priority-adjustment policy reduces
the interference on high-critical tasks by decreasing the priority of low-critical tasks
when the low-critical workload exceeds the refined bound. The workload-shaping



policy shapes the incoming low-critical workload to comply with the refined bound
by keeping the priority of low-critical tasks always the highest.

— To update the refined bound for low-critical tasks, Real-Time Interface is tradi-
tionally used [Wandeler and Thiele 2005; Wandeler et al. 2012] to compute the
provided service and demand bound functions for lower priority tasks. To eliminate
the complex Real-Time Interface computation that requires intensive numerical
calculation, a lightweight method with the complexity of O(n · log(n)) is developed,
making the online adaptations applicable at runtime.

— Extensive experiments are presented to show the efficiency and effectiveness of
our two proposed workload management policies. Comparing with the method that
applies the exact Real-Time Interface computation, the timing overhead of our
proposed lightweight method is one and two orders of magnitude lower in the
priority-adjustment policy and in the workload-shaping policy, respectively. The
workload management effect of using the lightweight method has minor difference
with that of using the exact Real-Time Interface method.

This article builds on the work presented in [Hu et al. 2015]. In the present
version, this adaptive scheme is stated with more explanations and proofs. Except
the shaping approach in [Hu et al. 2015], we also present the priority-adjustment
policy in adaptively managing the workload. Besides, in this article the shaping
behavior is different. In [Hu et al. 2015], the bound of constraining low-critical tasks
is updated only when there are no pending high-critical events, because the model
in [Hu et al. 2015] does not cover the case that there are some carry-on events (released
but not finished). This article models the carry-on events, which makes it possible to
update the bound anytime. Furthermore, more experiments are presented to show the
effectiveness of our two proposed workload management policies.

The rest of this article is organized as follows: Section 2 reviews related work.
Section 3 provides our system model and settings. Section 4 presents the schedulability
analysis by applying the Real-Time Interface and the future workload bound by
applying dynamic counters. Section 5 presents the priority-adjustment policy and
workload-shaping policy to do the low-critical workload management. Section 6
proposes a lightweight method for refining the runtime workload bound. Simulation
results are presented in Section 7 and Section 8 concludes this article.

2. RELATED WORK
Since the first paper on the verification of a proposed MCS in 2007 [Vestal 2007],
improving the performance of MCS has been widely studied.

In contrast with the conventional real-time systems, a key aspect of the MCS is
that system parameters, such as tasks’ worst-case execution times (WCETs), become
dependent on the criticality level of the tasks. Based on this model, a lot of
approaches were proposed to improve the performance of MCS. For fixed-priority
scheduling systems, Audsley’s algorithm [Audsley 2001] was proved to be optimal
to assign priorities to tasks in MCSs in [Dorin et al. 2010]. A more effective
approach of response time analysis was proposed to improve the system schedulability
in [Baruah et al. 2011b]. Regarding to the problem of unpractical model assumed
in [Baruah et al. 2011b], more practical concerns were addressed in [Burns and Baruah
2013]. For the earliest-deadline-first scheduling system, EDF-VD (EDF-with virtual
deadlines) [Baruah et al. 2011a] was proposed to successfully schedule mixed-critical
tasks. An Elastic Mixed-Criticality task model was presented in [Su and Zhu 2013]
to improve the service of low-critical tasks by allowing low-critical tasks to run more
frequently in certain circumstances, and simulation results showed that the proposed
Early-Release EDF algorithm under this model can schedule much more task sets than
EDF-VD. The Elastic Mixed-Criticality task model was extended in [Su et al. 2014]
to allow each low-critical task to have a pair of periods. Besides, virtual deadlines of



high-critical tasks and demand bound function analysis were introduced to explore the
service guarantees to low-critical tasks in [Su et al. 2014].

All of the aforementioned works are based on the standard mixed-criticality
model [Burns and Davis 2015], in which all tasks are sporadically activated and the
system has a mode switch at runtime. In contrast with this standard model, the task
model in this article is allowed to be activated with any pattern and the system
has no mode switch at runtime. This model has been studied in recent work, such
as [Neukirchner et al. 2013a; Neukirchner et al. 2013b; Tobuschat et al. 2014]. In the
following, we review the existing workload management approaches under this task
model.

In the network calculus [Le Boudec and Thiran 2001], the greedy shapers were
proposed to strictly conform the overloaded packets to the arrival constraints. An
important property of the greedy shaper is “greedy shaper comes for free” [Le Boudec
and Thiran 2001], which means that the shaping does not increase delay or buffer
requirements. The use of greedy shaper was introduced to schedule the real-time
events in [Wandeler et al. 2012], and it was found that the property of “greedy shaper
comes for free” is also applicable for shaping real-time events. In [Dewan and Fisher
2012], an admission server was proposed to enforce arbitrary real-time demand-curve
interfaces. However, its implementation overhead is not low. In [Huang et al. 2012],
by implementing a dual-bucket mechanism (similar to dynamic counters [Lampka
et al. 2011]) into FPGA, the runtime inputs are conformed to the designed arrival
constraints. The implementation showed that the resource and timing overheads of
this shaping scheme are very low in FPGA. Another monitoring method based on
the minimum distance functions (i.e., an inverse representation of arrival curves) was
proposed to do the event model verification [Neukirchner et al. 2012]. This method is
able to monitor the periodic burst events. Its runtime overhead can be reduced by using
an l-repetitive function to represent the minimum distance function. The monitoring
difference between using the dynamic counters and l-repetitive function was explored
in [Hu et al. 2015; Hu et al. 2016]. Although both dynamic counters and l-repetitive
functions are effective in monitoring some certain-pattern event traces, only dynamic
counters approach was presented how to use the past monitoring results to predict the
future event traces [Lampka et al. 2011].

The multi-mode monitoring and workload monitoring were proposed in [Neukirchn-
er et al. 2013b] to monitor the low-critical workload by switching the workload bound
distribution of specific low-critical tasks. A similar approach is to monitor the low-
critical events as a group [Neukirchner et al. 2013a] by using workload arrival curve, in
which way the system utilization increases while the timing constraints of high-critical
tasks are met. By monitoring the runtime workload, a scheme named workload-aware
shaping was proposed to improve the resource utilization by prioritizing the low-
critical accesses over high-critical accesses, and exchange the priorities among them
only when the incoming low-critical workload exceeds the designed bound [Tobuschat
et al. 2014]. Phan et al. [Phan and Lee 2013] introduced another technique to
use an optimal greedy shaper for shaping periodic tasks with jitter to improve the
schedulability of real-time systems.

None of the preceding monitoring or shaping scheme allows to refine the shaping
bound. Thus, their shaping schemes are pessimistic because of the differences between
the actual demand and the worst-case demand. In this article, we aim to fill this gap
by providing an adaptive bound refinement scheme.

3. SYSTEM MODEL AND SETTINGS
3.1. System Model

3.1.1. Event Stream Model. In this article, the job of a task is assumed to be activated by
an input event, which is a common assumption in real-time systems. Task activations



in the system are thus expressed as an event stream. A trace of such an event stream
is described by means of a differential arrival function R[s, t) that denotes the sum of
events arrived in the time interval [s, t), with R[s, s) = 0, ∀s, t ∈ R. While any R always
describes one concrete trace, a 2-tuple α(∆) = [αu(∆), αl(∆)] provides an upper and
lower bound on the number of events over any time interval of length ∆.

Definition 3.1 (Event Arrival Curve [Wandeler 2006]). Denote R[s, t) as the number
of events that arrive on an event stream in the time interval [s, t). Then, αu and αl

represent the upper and lower bound on the number of event in any interval t− s, that
is,

αl(t− s) ≤ R[s, t) ≤ αu(t− s),∀t ≥ s ≥ 0,

with αl(∆) ≥ 0, αu(∆) ≥ 0 for ∀∆ ∈ R≥0.

Especially, for a pjd event stream with period p, jitter j, and minimal inter arrival
distance d, the upper event arrival curve is that

αu(∆) = min{d∆ + j

p
e, d∆

d
e}. (1)

For the easiness, to represent the upper event arrival curve of task τi, we denote it
as αu(τi,∆). Similar denotation are used in the following.

3.1.2. Resource Model. Analogous to the event arrival curve that provides an abstract
event stream model, a tuple β(∆) = [βu(∆), βl(∆)] of upper and lower service curve
then provides an abstract resource model.

Definition 3.2 (Service Curve [Wandeler 2006]). Denote C[s, t) as the number of
events that arrive on an event stream in the time interval [s, t). Then, βu and βl represent
the upper and lower bound on the resource availability in any interval t− s, that is,

βl(t− s) ≤ C[s, t) ≤ βu(t− s), ∀t ≥ s ≥ 0,

with βl(∆) ≥ 0, βu(∆) ≥ 0 for ∀∆ ∈ R≥0.

Again, service curves substantially generalize classical resource models, such as the
bounded delay or the periodic resource model. Besides, βl(τi,∆) denotes the minimum
service that a task τi obtains on the resource over any time interval ∆.

3.1.3. Workload Model. As an event arrival curve α specifies the event and a service
curve β specifies the available processing time, the event arrival curve α has to be
transformed to the workload arrival curve α to indicate the amount of computation
time required for the arrived events in intervals.

Definition 3.3 (Workload Arrival Curve [Wandeler 2006]). Denote W [s, t) as the
number of clock cycles required to process t − s consecutive events on a computer or
communication resource. Then, αu and αl represent the upper and lower bound on the
required cycles in any interval t− s, that is,

αl(t− s) ≤W [s, t) ≤ αu(t− s),∀t ≥ s ≥ 0,

with αl(∆) ≥ 0, αu(∆) ≥ 0 for ∀∆ ∈ R≥0.

Suppose that the WCET of an event stream is c, then the transformation can be done
by αu = c · αu, αl = c · αl and back by αu = αu/c, αl = αl/c. For a task τi, the upper
bound workload for it can be denoted as αu(τi,∆).

3.1.4. Demand Bound Function. In order to analyze the schedulability of real-time tasks,
a easy approach is to use demand bound functions.



Definition 3.4 (Demand Bound Function [Ekberg and Yi 2012]). A demand bound
function dbf(τi,∆) gives an upper bound on the maximum possible execution demand of
task τi in any time interval of length ∆, where demand is calculated as the total amount
of required execution time of jobs with their whole scheduling windows within the time
interval.

Based on this definition, a tight demand bound function can be obtained by the
following lemma.

LEMMA 3.5 ([THIELE ET AL. 2006]). Suppose a task τi with relative deadline Di

and upper arrival curve α(τi,∆). To satisfy the required relative deadline Di, the
demand bound function of τi is

dbf(τi,∆) = αu(τi,∆−Di). (2)

The key point that makes demand and supply bound functions useful for the
schedulability analysis of real-time systems is the following fact.

PROPOSITION 3.6 ([THIELE ET AL. 2000]). The task τi is schedulable if and only
if the condition

βl(τi,∆) ≥ dbf(τi,∆) (3)

holds.
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3.1.5. Processing Model. In the framework of Real-Time Calculus,
the task processing is often modeled by abstract performance
component that acts as curve transformer in the domain of
arrival and service curve, where the transferring function depends
on the modeled processing semantics. The Greedy Processing
Component (GPC) models a task that is triggered by the events
which are queued up in the FIFO (first-in-first-out) buffer. A
typical case is shown in Fig. 1, where [αui , α

l
i] and [βui , β

l
i] are

respectively the workload arrival curve and resource service
curve. The processing of two tasks in a preemptive fixed-priority
scheduling system is abstracted as two GPCs. The lower service for the lower-
priority task is the processing service left over after processing the higher-priority
task [Wandeler 2006]:

βl2(∆) = RT(βl1, α
u
1 )(∆) = sup

0≤λ≤∆
{βl1(λ)− αu1 (λ)}. (4)

3.2. System Settings
This article considers a uniprocessor that is scheduled according to the preemptive
fixed-priority (FP) scheduling policy. Two system settings w.r.t. the two workload
management policies are presented, as shown in Fig. 2. In both systems, there
are a set of low-critical tasks τ l = {τ l1, τ l2, ..., τ lm} and a set of high-critical tasks
τh = {τh1 , τh2 , ..., τhn}. The corresponding event streams for them are denoted as
Sl = {Sl1, Sl2, ..., Slm} and Sh = {Sh1 , Sh2 , ..., Shn}. For every high-critical event stream,
a monitor is applied to monitor its arrival events. For the high-critical tasks, in order
to strictly meet their deadlines, their activation patterns are often fixed. Therefore,
their lower and upper arrival curves are known in the system design-time stage. For
low-critical tasks, such as multi-media tasks in a car, their workload may sometimes
be overloaded. Hence, their workload needs to be regulated, in order to constrain their
interferences on high-critical tasks. This system assumption is the same as recent
works of [Neukirchner et al. 2013a; Neukirchner et al. 2013b; Tobuschat et al. 2014].

In the case for priority-adjustment policy, as shown in Fig. 2(a), a priority controller
is applied in the system to dynamically assign priorities for the arriving events. The
low-critical events are grouped together sharing the same priority, and are monitored
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Fig. 2. Mixed-criticality systems scheduled by the preemptive FP policy

by the Monitor L during the runtime. The priority of all low-critical tasks is named
low-critical priority in the following. The priorities order of high-critical tasks is fixed
and unchanged during the runtime, while the low-critical priority will be changed to
lower level or higher level, subjected to the actual demand of high-critical tasks. This
means that the priority controller can only change the priority of τ l from 1 to n + 1.
Without the loss of generality, the tasks τh1 , ..., τhn in τh are prioritized in a descending
order, that is, the priority of the task τhi is higher than that of the task τhj when i < j.

In the case for workload-shaping policy, as shown in Fig. 2(b), a shaper is used
to manage the inflowing workload from low-critical event streams. In this case, the
priorities of all tasks cannot be changed during the runtime. The priorities for high-
critical tasks τh1 , ..., τ

h
n are also set as a descending order. All low-critical tasks are

grouped together to share the highest priority among all tasks, with the aim of
maximizing the service for low-critical tasks. In contrast to the priority controller in
priority-adjustment policy, the shaper is only responsible for the release of low-critical
events. The principle of releasing an event is that, the released event should not result
in a deadline miss of high-critical tasks.

In all monitors or shapers, buffers are used to store the backlogged events for
every event stream, because there may be some events that have arrived but not
released. The buffer obeys the principle of first-come-first-serve. The size of the buffer
is assumed to be large enough. The effect of buffer size on the workload management
is out of the scope of this article. Note that, although the WCET of every event can
be different, the low-critical events can be simply considered from one stream whose
workload is bounded by a workload arrival curve, which is similar to the workload
bound of a group tasks in [Neukirchner et al. 2013a].
4. REAL-TIME CALCULUS ROUTINES AND INTERFACE ANALYSIS
In this section, we present the basic routines to construct the actual arrival curve and
demand bound function at runtime, on top of which we present the interface analysis
to guarantee no deadline misses for high-critical tasks.
4.1. Arrival Curves and Demand Bound Functions with Historical Information
Before presenting the schedulability analysis, we first introduce how to derive the
actual arrival curve and demand bound functions with historical information. The
actual arrival curve consists of the workload of future events, the backlogged events,
and the carry-on event (active and not finished), while the demand bound function also
consists of the demand of the future events, the backlogged events, and the carry-on
event.



Algorithm 1 Implement a dynamic counter to track a staircase function
Input: signal s, .tuple < DCj , CLKj >;
1: if s = eventArrival then
2: if DCj = Nu

j then
3: reset timer(CLKj , δuj )
4: kj = 0
5: end if
6: DCj ← DCj − 1
7: end if

8: if s = CLKjT imeout then
9: DCj ← min(DCj+1,Nu

j )
10: reset timer(CLKj , δuj )
11: kj = kj + 1
12: end if
13: if DCj < 0 then
14: report exception
15: end if

4.1.1. Future Events and their Demand Bound. The arrival pattern of future events can be
predicted by using the past information. We adopt the dynamic counters approach to
monitor the runtime events as this approach was presented how to fast obtain a tight
bound on the number of future events.
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Fig. 3. An example for using dynamic counters to
predict the future events

In principle, any (discrete) complex
arrival pattern can be bounded by a
set of upper and lower staircase func-
tions [Lampka et al. 2009]. Therefore,
suppose the arrival curve αu(τi,∆) of
task τi is composed of n′ staircase
functions, i.e.,

g∀∆ ∈ R≥0 : αu(τi,∆) ≤ min
j=1..n′

{Nu
j + b∆

δuj
c},

where Nu
j is the initial value of a

staircase function and δuj is the stair
length.

A dynamic counter (DCj) can be used
to track a single upper staircase function
(αuj ) and predict its future workload. The detailed tracking algorithm can be seen in
Algo. 1 [Lampka et al. 2011]. DCj tracks the potential burst capacity, and the auxiliary
variable kj in Algo. 1 tracks the offset between the current time t and the last δuj . Below
shows an example of using dynamic counters for event prediction.

Example 4.1. As shown in Fig. 3, for the PJD task with (P, J, D)=(100, 300, 20), two
staircase functions, α1 and α2, are used to approximate the arrival curve of this PJD
task. Every staircase function is tracked by a counter. Assume the real arrival event
trace is shown in the event trace Ract. By applying Algo. 1, DC1 tracks the arrival event
trace based on α1, and DC2 tracks the arrival event trace based on α2. The minimum of
DC1(t) and DC2(t) is the potential activations of this task at time t.

As shown in Fig. 3, the bold line shows the worst-case arrival pattern at the
beginning, DC1(t0) = Nu

1 = 1, DC2(t0) = Nu
2 = 4. At time t1, two events have been

recorded, and dynamic counters are updated to that DC1(t1) = 1, DC2(t1) = 2. The
future event prediction is shown in the dotted line, which is less than the worst-case
assumption. At time t2, dynamic counters are updated to that DC1(t2) = 1, DC2(t2) = 0
since five events arrived during [t0, t2]. The prediction shown in the solid line is further
less than the one at time t1.

The potential burst capacity DCj(t), together with staircase function, yields the
following future events prediction [Lampka et al. 2011]:

Uj(τi,∆, t) = DCj(t) +

 b
∆+(t−kjδuj )

δuj
c if DCj(t) < Nu

j

b ∆
δuj
c if DCj(t) = Nu

j

(5)



The above function bounds future event arrivals at time t. By using the monitor
to track the event trace for tasks, DCj and kj are known during the runtime.
Therefore, Uj is also known. For bounding the number of future event arrivals w.r.t.
a complex activations pattern of task τi, one can simply take the minimum over all the
Uj [Lampka et al. 2011]:

αu(τi,∆, t) = min
j=1..n′

(Uj(τi,∆, t)). (6)

From lemma 3.5, it is derived that the demand bound function of future events are
that

dbfF(τi,∆, t) = αu(τi,∆−Di, t) · ci, (7)

where Di and ci are the relative deadline and WCET of task τi.
4.1.2. Backlogged Events and their Demand Bound. During the runtime, if events arrive

more frequently than the rate that they can be processed, some events may be
backlogged. We denote the set of unfinished events of τi in the backlog at time t as
E(τi, t). Then, the number of backlogged events can be denoted as |E(τi, t)|. For each
event ei,j ∈ E(τi, t), we use Di,j to denote its absolute deadline.

Definition 4.2 (Backlogged Demand [Huang et al. 2011]). Suppose the set of unfin-
ished events of a task τi in the buffer at time t are denoted as E(τi, t). Let Di,j denote the
absolute deadline for event ei,j ∈ E(τi, t). A backlogged demand for this task is defined
as

dbfB(τi,∆, t) = ci ·
{

(j − 1), Di,j − t < ∆ < Di,j+1 − t,
|E(τi, t)|, ∆ ≥ Di,|E(τi,t)| − t,

in which, ci is the WCET, and Di,0 is defined as t for brevity.
4.1.3. Carry-On Event and its Demand Bound. Suppose at time t, an event of task τi has

been released but its execution is not finished. This event is called a carry-on event.
Similar to the demand of backlogged events, the demand of carry-on event is defined
as follows.

Definition 4.3 (Carry-On Demand). Suppose C(τi, t) is used to denote the left time
for finishing a carry-on event of τi at time t, and the demand for the carry-on event is
that

dbfC(τi,∆, t) = ci ·
{

0, ∆ < Dc − t,
C(τi, t), ∆ ≥ Dc − t,

where Dc is the absolute deadline of this carry-on event.
Based on the concept of arrival curve and demand bound function, it can be known

that the workload arrival curve αu(τi,∆, t) and demand bound function dbf(τi,∆, t) of
task τi are that,

αu(τi,∆, t) = ci · αu(τi,∆, t) + ci · |E(τi, t)|+ C(τi, t),

dbf(τi,∆, t) = dbfF(τi,∆, t) + dbfB(τi,∆, t) + dbfC(τi,∆, t).
(8)

Note that, since future events, backlogged events, and carry-on event are known
at runtime, the actual arrival curve and demand bound function are also known at
runtime.

4.2. Schedulability Analysis Based on Real-Time Interface
Based on the proposition 3.6, to sufficiently guarantee that the task τi can meet its
deadline from time t, the provided lower service should be greater than its demand
bound function, i.e.,

βl(τi,∆, t) ≥ dbf(τi,∆, t). (9)



In the following, two approaches are presented to analyze the system schedulability.
One is to derive the whole demand bound function of all high-critical tasks, and
guarantee that the provided lower service is greater than the whole demand bound
function. This approach is often used in deriving the bound offline [Wandeler et al.
2012; Neukirchner et al. 2013a; Neukirchner et al. 2013b; Tobuschat et al. 2014]. The
other approach is to guarantee the task schedulability individually, in which there are
n inequalities to be guaranteed.
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Fig. 4. Real-Time Interface analysis

4.2.1. Schedulability Analsyis by Considering High-
Critical Tasks as a Group. In the initial setting, as
the priority of low-critical tasks is set as the
highest, the system can be abstracted as Fig. 4,
where

— αu(τ l,∆, t) denotes the workload arrival curve
of the set of all low-critical tasks,

— βl(τ l + τh,∆, t) denotes the provided lower
service curve for all tasks,

— βl(τh,∆, t) denotes the provided service for the
set of all high-critical tasks,

— and dbf(τh,∆, t) denotes the demand bound
function to meet deadlines of all high-critical
tasks.

Furthermore, for the easiness of the analysis in
the following, we denote that

— τh,ni represents the set of high-critical tasks of τhi , τhi+1, ..., τhn . Then, we have
τh,n1 = τh. By this way, βl(τh,ni ,∆, t) and dbf(τh,ni ,∆, t) respectively represent the
lower service curve and the demand bound function for high-critical tasks from τhi to
τhn .

THEOREM 4.4. In order to guarantee that all high-critical tasks are schedulable, the
maximum feasible αu(τ l,∆, t) is that,

αu(τ l,∆, t) = RT−α
(

dbf(τh,∆, t), βl(τ l + τh,∆, t)
)

1. (10)

PROOF. To sufficiently guarantee that all high-critical tasks can be scheduled, the
provided service for the set of high-critical tasks should be greater than their demand
bound function, i.e.,

βl(τh,∆, t) ≥ dbf(τh,∆, t). (11)

According to the processing model of fixed-priority, we have

βl(τh,∆, t) = RT
(
βl(τ l + τh,∆, t), αu(τ l,∆, t)

)
. (12)

By inverting Eq. 12, we can get that,

αu(τ l,∆, t) = RT−α
(
βl(τh,∆, t), βl(τ l + τh,∆, t)

)
.

Since βl(τh,∆, t) ≥ dbf(τh,∆, t), the maximum feasible αu(τ l,∆, t) is obtained by using
dbf(τh,∆, t) to replace βl(τh,∆, t). Hence, Eq. 10 holds.

1RT−α(β′, β)(∆) = β(∆ +λ)−β′(∆ +λ) for λ = sup{τ : β′(∆ + τ) = β′(∆)}, from the real-time interface
in [Wandeler and Thiele 2005].
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Fig. 5. The flow of backward derivation

In Eq. 10, βl(τ l + τh,∆, t) is also the full processing ability of the platform.
As the platform is assumed to be a uniprocessor with constant processing ability,
βl(τ l + τh,∆, t) = ∆ during the runtime. Then, to get αu(τ l,∆, t), one has to know
dbf(τh,∆, t). Based on the Real-Time Interface, dbf(τh,∆, t) can be known by the
backward derivation [Wandeler and Thiele 2005; Thiele et al. 2006]. The backward
derivation step to get dbf(τh,∆, t) is briefly introduced as follows.

As shown in Fig. 5, for achieving the schedulability of tasks from τhi to τhn ,
dbf(τh,ni ,∆, t) should be greater than the demand bound function of task τhi , and the
provided service for tasks from τhi+1 to τhn should be greater than dbf(τh,ni+1,∆, t), i.e.,

dbf(τh,ni ,∆, t) ≥ dbf(τhi ,∆, t),

RT
(

dbf(τh,ni ,∆, t), αu(τhi ,∆, t)
)

= β(τh,ni+1 ,∆, t) ≥ dbf(τh,ni+1 ,∆, t).
(13)

Therefore, by inverting Eq. 13, we can get that

dbf(τh,ni ,∆, t) = max
{

dbf(τhi ,∆, t),RT−β
(

dbf(τh,ni+1 ,∆, t), α
u(τhi ,∆, t)

)}
2. (14)

By applying Eq. 14 for i = n−1, n−2, ..., 1, the demand bound function dbf(τh,n1 ,∆, t)
for the set of all high-critical tasks is derived. Then, by applying Eq. 10, the maximum
workload arrival curve αu(τ l,∆, t) for low-critical tasks can be computed.

4.2.2. Schedulability Analysis by Considering High-Critical Tasks Separately. By considering
the schedulability of each high-critical task, we have the following theorem.

THEOREM 4.5. All high-critical tasks are schedulable if and only if

βl(τhi ,∆, t) ≥ dbf(τhi ,∆, t), ∀ i ∈ [1..n]. (15)

PROOF. This theorem directly stems from the schedulable condition of Eq. 9.

5. MANAGEMENT POLICY ON LOW-CRITICAL TASKS

Keeping Priority

lowCriticalEventArrival

lowCriticalEventFinish

Decrease Priority by
Applying Algo. 2

Applying Algo. 3
Increase Priority by

Fig. 6. The flow of priority-adjustment policy

By constantly updating the up-
per bound of constraint on low-
critical tasks, one can preven-
t the low-critical interferences
on high-critical tasks either by
decreasing their execution pri-
orities or by using a shaper to
shape the overloaded workload
when the low-critical workload
violates the bound. In this section, we present how to apply the priority-adjustment
policy and workload-shaping policy in managing the low-critical workload at runtime.

5.1. Priority-Adjustment Policy
For the priority-adjustment policy, since the relative priority order of high-critical
tasks is fixed, we have to decide when to decrease or increase the priority of low-critical
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Fig. 7. The diagram showing the verification of system scheduliability by priority-adjustment policy

tasks. All low-critical tasks share one priority, which indicates that they are scheduled
as a group. In the initial setting, the priority of low-critical tasks is set as the highest.
During the runtime, their priority is dynamically adjusted based on the actual demand
bound functions of high-critical tasks. An overview of the priority-adjustment policy is
illustrated in Fig. 6. Whenever a low-critical event arrives or a low-critical event is
finished, the low-critical priority will be decreased or increased, in order to keep no
deadline miss of all high-critical tasks.

5.1.1. Decreasing Priority. For the decrease of the priority of all low-critical tasks, we
have to verify whether current low-critical workload has already violated the bound.
Since the low-critical workload is unpredictable, its future bound is unknown. Such
verification only relies on the low-critical workload that has already arrived. Therefore,
every time when a new low-critical event arrives, the schedulability verification should
be done to guarantee that all high-critical tasks can be scheduled. If the new arrival
event results in other high-critical tasks missing their deadlines, the low-critical
priority should be decreased to avoid the deadline miss. Now we formulate a general
statement for the problem of how to find a feasible priority for low-critical tasks.

Problem. Let P (τ l) denote the priority of the set of low-critical tasks and P (τhi )
denote the priority of the high-critical task τhi . Suppose before time t, all high-critical
tasks are schedualable with the priorities order that P (τh1 ) > ... > P (τhk ) > P (τ l) >
P (τhk+1) > ... > P (τhn ). If a new low-critical event arrives at time t, how to assign the
priorities so that all high-critical tasks can still keep schedulable.

The principle for reassigning the priorities is that, the schedulability of high-critical
tasks should be guaranteed. The schedulability verification diagram is shown in Fig. 7.
Suppose the low-critical workload becomes W (t) with the arrival of a new event.
Then, by using the backward derivation, the demand bound function dbf(τh,nk+1,∆, t)

for serving tasks from τhk+1 to τhn is derived. In order to meet the deadlines of tasks
τh,nk+1, the provided service βl(τh,nk+1,∆, t) for them should be greater than their demand
bound function, that is,

βl(τh,nk+1,∆, t) ≥ dbf(τh,nk+1,∆, t). (16)
By applying the forward computation of RT, we get the provided service for tasks

τh,nk+1 and τ l, which is,

βl(τh,ni + τ l,∆, t) = RT
(
βl(τh,ni−1 + τ l,∆, t), αu(τhi−1,∆, t)

)
, (17)

by applying i = 2, ..., k+ 1 and βl(τh+ τ l,∆, t) = ∆. To get βl(τh,nk+1,∆, t), the low-critical
workload should also be considered because the priority of low-critical tasks is greater
than tasks τh,nk+1. That is,

βl(τh,nk+1,∆, t) = βl(τh,nk+1 + τ l,∆, t)−W (t). (18)

If Eq. 16 does not hold, the low-critical priority has to be decreased. In general, the
Algo. 2 can be applied to find the highest feasible priority for low-critical tasks. The
procedure is that, every priority that is equal to or lower than the original low-critical
priority is a possible priority for low-critical tasks. Therefore, Algo. 2 checks every



Algorithm 2 Procedure of priority reassignment with a new arrival low-critical event
1: for k[ = k + 1→ n do
2: Compute βl(τh,n

k[+1
,∆, t) and dbf(τh,n

k[+1
,∆, t) by Eqs. 14, 17, 18;

3: if βl(τh,n
k[+1

,∆, t) ≥ dbf(τh,n
k[+1

,∆, t) then
4: Change the priorities order to be that P (τh1 ) > ... > P (τh

k[
) > P (τ l) > P (τh

k[+1
) > ... >

P (τhn );
5: break;
6: end if
7: end for

possible priority from high to low until a feasible priority is found out. This algorithm
leads to the following theorem.

THEOREM 5.1. Algo. 2 can always find a schedule, i.e., a priority assigned to low-
critical tasks, to sufficient guarantee all high-critical tasks schedulable.

PROOF. Denote t− as the time instant just before the arrival of new event, and
denote t+ as the time instant just after the arrival of new event. The demand bound
functions of all high-critical tasks are the same at t− and at t+. Since all high-critical
tasks are schedulable at time t−, we have

βl(τhi ,∆, t
−) ≥ dbf(τhi ,∆, t

−) = dbf(τhi ,∆, t
+), ∀ i ∈ [1..k],

βl(τh,nk+1,∆, t
−) ≥ dbf(τh,nk+1,∆, t

−) = dbf(τh,nk+1,∆, t
+).

(19)

Since the priorities of tasks from τh1 to τhk is greater than that of τ l, the services for
tasks from τh1 to τhk are not changed by the arrival of new low-critical event, i.e.,
βl(τhi ,∆, t

−) = βl(τhi ,∆, t
+), ∀ i ∈ [1..k]. Hence, tasks from τh1 to τhk are still schedulable.

With the new arrival of low-critical event, the low-critical workload changes from
W (t−) to be W (t+). The worst case of applying Algo. 2 is to assign the lowest priority
to low-critical tasks. We now prove that the lowest priority is always a feasible priority.

Suppose the priority of low-critical tasks is the lowest at t+, then the processing
resource βl(τh,nk+1 + τ l,∆, t+) will be fully provided to the task set τh,nk+1, and only the
remaining service after processing τh,nk+1 can be provided to low-critical tasks. Therefore,
we have

βl(τh,nk+1,∆, t
+) = βl(τh,nk+1 + τ l,∆, t+) = βl(τh,nk+1 + τ l,∆, t−).

Because βl(τh,nk+1,∆, t
−) = βl(τh,nk+1 + τ l,∆, t−)−W (t−), we have

βl(τh,nk+1,∆, t
+) = βl(τh,nk+1 + τ l,∆, t−) ≥ βl(τh,nk+1 + τ l,∆, t−)−W (t−) = βl(τh,nk+1,∆, t

−)

Because of Eq. 19, we can get that βl(τh,nk+1,∆, t
+) ≥ dbf(τh,nk+1,∆, t

+). Hence, we have
proved that the lowest priority is always a feasible priority to be assigned to low-critical
tasks and all tasks in τh,nk+1 are also schedulable.

5.1.2. Increasing Priority. In our policy, we suppose that the low-critical priority can be
increased when the low-critical workload is decreased. It indicates that, whenever a
low-critical event has been finished, the low-critical priority can be increased. This is
because, the interference imposed on high-critical tasks with priorities lower than the
low-critical priority also decreases. The algorithm of increasing the low-critical priority
is similar to the algorithm of decreasing the low-critical priority. As shown in Algo. 3,
Eq. 16 is used to guarantee that the increased priority will not result in a deadline miss
of all lower-priority tasks. The chosen priority gradually increases until an infeasible
priority is found out. The reason for gradually increasing the chosen priority in Algo. 3



Algorithm 3 Procedure of priority reassignment after finishing a low-critical event
1: for k[ = k → 1 do
2: Compute βl(τh,n

k[
,∆, t) and dbf(τh,n

k[
,∆, t) by Eqs. 14, 17, 18;

3: if βl(τh,n
k[

,∆, t) < dbf(τh,n
k[

,∆, t) then
4: Change the priorities order to be that P (τh1 ) > ... > P (τh

k[+1
) > P (τ l) > P (τh

k[
) > ... >

P (τhn );
5: break;
6: end if
7: end for

or gradually decreasing the chosen priority in Algo. 2, instead of searching the priority
from the highest to the lowest in Algo. 3, or the lowest to the highest in Algo. 2, is that
the low-critical priority is supposed to keep unchanged with the finish or the arrival of
the low-critical event.

THEOREM 5.2. Algo. 3 can always find a schedule, i.e., a priority assigned to low-
critical tasks, to sufficient guarantee all high-critical tasks schedulable.

We omit the proof due to the similarity to theorem 5.1. The worst case of applying
Algo. 3 is to keep the low-critical priority unchanged.

5.1.3. Runtime Behavior. The monitors in this system setting are only used to monitor
the arrival events without any interference on their releases. The priority controller is
only responsible for reassigning the priorities. All events are scheduled based on their
assigned priorities. We assume, for every priorities reassignment, there is an instant
interrupt to force the processor to process events based on the new priorities order.
As there are multiple streams of low-critical events and all of them share one priority,
they are served based on the principle of first-come-first-serve.
5.2. Workload-Shaping Policy

dbf(τh,∆, t)

βbd(∆, ρ∗, t)

∆

ρ∗

b

b b

b b

b b

b b

Fig. 8. An illustration for the LFII

In contrast to the workload management by
changing the execution priorities, the workload-
shaping policy manages the low-critical workload
by using a shaper to regulate the inflow of low-
critical events. The priority of low-critical tasks
is constantly set as the highest.

5.2.1. The Release of an Event. To ensure that the
released event should keep the schedulability of
all high-critical tasks, the WCET of a released
event should not be larger than the longest
feasible interference interval (LFII).

Definition 5.3 (Longest Feasible Interference Interval). The longest feasible interfer-
ence interval ρ∗(t) with respect to a given demand bound function dbf(τh,∆, t) is defined
as:

ρ∗(t) = max{ρ∗ : βbd(∆, ρ∗, t) ≥ dbf(τh,∆, t), ∀∆ ≥ 0}. (20)

where βbd(∆, ρ∗, t) is a bounded-delay service curve that βbd(∆, ρ∗, t) = max{0, (∆ −
ρ∗)}, ∀∆ ≥ 0.

The LFII is illustrated in Fig. 8, where dbf(τh,∆, t) can be computed by using the
backward derivation. βbd(∆, ρ∗, t) means that the processing service is delayed for
ρ∗. In this case, if the WCET of released event is smaller than the LFII, all high-
critical tasks can still be schedulable as the provided service for them is larger than
βbd(∆, ρ∗, t). Therefore, during the runtime, by constantly computing the LFII, the
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Fig. 9. The flow of workload-shaping policy
shaper decides how to release the arrival low-critical events. For every update of the
LFII, the backward derivation has to be applied in deriving the dbf(τh,∆, t), then the
binary searching is used to search the maximum feasible LFII.

5.2.2. The Adaptive Shaping Flow. The flow of workload-shaping policy is seen in Fig. 9.
The shaper has three states and one action, which are states of buffer checking, Lfii
updating, eventFinish checking, and the action of release event.

At the beginning, the shaper stays in buffer checking, in which the shaper
constantly checks the emergence of an event in the buffer. Whenever there is an event
in the buffer, the shaper transits to the Lfii updating, in which the shaper updates
the LFII, and compares it with the WCET of the event that is to be released. Once
the LFII is greater than the WCET, this event is released, and the shaper transits to
the eventFinish checking. The shaper stays in this state until the released event is
finished, then the shaper transits back to the buffer checking.

When the shaper is in the Lfii updating, the time for updating the LFII is based
on the execution of high-critical events. The shaper is designed to update the LFII at
the time when a high-critical event is finished. If the updated LFII is still less than the
WCET of the event to be released, the LFII will be updated again when the next high-
critical event is finished. The time setting for updating LFII is based on the fact that
the demand of high-critical tasks will decrease if any high-critical event is finished,
thus making the LFII greater.

6. A LIGHTWEIGHT METHOD
Both of schedulability analyzing approaches in Section 4 rely on the heavy
computation, which prohibits their applications in the online cases. The computational
overhead originates from three parts, i.e., RT computation, backward derivation, and
the binary search for the LFII. To eliminate the heavy computation, a lightweight
method is proposed in this section.
6.1. The Scenario of Setting the Low-Critical Priority as the Highest
Our mixed-criticality settings include a set of low-critical tasks and a set of high-
critical tasks. To simplify the problem, we discuss how to compute a bound of
low-critical workload in the scenario where the low-critical priority is higher than
the priorities of all high-critical tasks. Suppose such a bound is ρ∗. A feasible ρ∗

should guarantee that all high-critical tasks can be scheduled. Hence, the problem
of obtaining the maximum ρ∗ is that,

maximize ρ∗(t),

s.t. βl(τhi ,∆, t) ≥ dbf(τhi ,∆, t), ∀ i ∈ [1..n], (21)

or s.t. βl(τh,∆, t) ≥ dbf(τh,∆, t). (22)
This is a maximization problem with the constraint Eq. 21 or the constraint Eq. 22.

The constraint Eq. 21 relies on solving n inequalities with forward RT computations,
and the constraint Eq. 22 relies on backward deriving the group demand bound
function. Both methods need to compute the complex (de-)convolution many times. To
eliminate such complex computations, a leaky bucket [Le Boudec and Thiran 2001] is
proposed to represent the workload arrival curve and a closed-form equation is derived
for representing the provided service. In the following, we introduce the closed-form
equation by analyzing a system with only two high-critical tasks.
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Fig. 10. The scheme for illustrating the schedulabili-
ty analysis of two tasks

6.1.1. Case for a System with Only Two
High-Critical Tasks. Given two high-critical
tasks τh1 and τh2 in a uniprocessor. Sup-
posing at time t, their workload arrival
curves are αu(τh1 ,∆, t) and αu(τh2 ,∆, t),
and their demand bound functions are
dbf(τh1 ,∆, t) and dbf(τh2 ,∆, t). Suppose
the provided service is a bounded delay
function βbd(∆, ρ∗, t) = max{0,∆ −
ρ∗}. As shown in Fig. 10, to meet the
deadlines of the tasks τh1 and τh2 , the
following inequalities should hold:

βl(τh1 ,∆, t) ≥ dbf(τh1 ,∆, t), βl(τh2 ,∆, t) ≥ dbf(τh2 ,∆, t).

where
βl(τh1 ,∆, t) = βbd(∆, ρ∗, t), βl(τh2 ,∆, t) = RT

(
βl(τh1 ,∆, t), α

u(τh1 ,∆, t)
)
.

If a leaky bucket lb(τh1 ,∆, t) = b1(t)+r1(t)·∆ is used to represent its workload arrival
curve αu(τh1 ,∆, t), then,

βl(τh2 ,∆, t) = RT
(
βl(τh1 ,∆, t), lb(τh1 ,∆, t)

)
= sup

0≤λ≤∆

{
max{0, λ− ρ∗} − b1(t)− r1(t) · λ

}
.

As βl(τh2 ,∆, t) ≥ 0, we abbreviate βl(τh2 ,∆, t) as follows

βl(τh2 ,∆, t) = max
{

0, (1− r1(t)) ·∆− ρ∗ − b1(t)
}
.

Then, to keep the schedulability of both tasks, one only needs to guarantee the
following two inequalities be true,

max{0,∆− ρ∗} ≥ dbf(τh1 ,∆, t), max
{

0, (1− r1(t)) ·∆− ρ∗ − b1(t)
}
≥ dbf(τh2 ,∆, t).

In this case, by using the leaky bucket to represent the original workload
arrival curve, both βl(τh1 ,∆, t) and βl(τh2 ,∆, t) are derived to be rate-latency
functions [Le Boudec and Thiran 2001]. The rates w.r.t. τh1 and τh2 are 1 and 1 − r1(t),
and the latencies w.r.t. τh1 and τh2 are ρ∗ and (ρ∗+b1(t))/(1−r1(t)). Actually, for a system
with more than two high-critical tasks, if all workload arrival curves are represented
by leaky buckets, the provided service for every high-critical task can be derived to be
a closed-form equation. This closed-form euqation is also a rate-latency function.

6.1.2. Closed-Form Equation for the Provided Service. Analogous to the schedulability
analysis with only two high-critical tasks, a similar procedure can be taken for
analyzing a system with more than two high-critical tasks. As analyzed in Section 4,
the following inequality sufficiently guarantees that all high-critical tasks can meet
their deadlines.

βl(τhi ,∆, t) ≥ dbf(τhi ,∆, t), ∀ i ∈ [1..n].

To get βl(τhi ,∆, t), a step-by-step forward RT computation should be used, which would
block the computation speed. To remove this step-by-step computation, a closed-form
equation is derived to represent the βl(τhi ,∆, t).

THEOREM 6.1. In a system with n high-critical tasks, the demand bound function
dbf(τhi ,∆, t) and workload arrival curve αu(τhi ,∆, t) are known at runtime. If a leaky
bucket with the form of lb(τhi ,∆, t) = ri(t) ·∆ + bi(t) is used to conservatively represent
αu(τhi ,∆, t) , i.e., lb(τhi ,∆, t) ≥ αu(τhi ,∆, t), the provided service βl(τhi ,∆, t) for each task
is as follows:

βl(τhi ,∆, t) = max{0, (1−Ri(t)) ·∆− ρ∗ −Bi(t)}, (23)



where Ri(t) =
i−1∑
j=1

rj(t), Bi(t) =
i−1∑
j=1

bj(t), and r0(t) = 0, b0(t) = 0 for brevity.

PROOF. We prove this by induction.
If n = 1,

βl(τh1 ,∆, t) = max{0, (1−R1(t)) ·∆− ρ∗ −B1(t)} = max{0,∆− ρ∗} = βbd(∆, ρ∗),

which is true.
We assume that Eq. 23 is true for the task τhn (n 6= 1). Then, for the task τhn+1, by

using the Real-Time Interface analysis,

βl(τhn+1,∆, t) = sup
0≤λ≤∆

{
max{0, (1−Rn(t)) ·∆− ρ∗ −Bn(t)} − bn(t)− rn(t) · λ

}
.

As βl(τhn+1,∆, t) ≥ 0, βl(τhn+1,∆, t) can be rewritten as follows for brevity,

βl(τhn+1,∆, t) = max
{

0, (1−Rn+1(t)) ·∆− ρ∗ −Bn+1(t)
}

COROLLARY 6.2. By using the conservative representation lb(τhi ,∆, t) ≥ αu(τhi ,∆, t)
to compute βl(τhi ,∆, t), under the constraint of Eq. 21, all high-critical tasks can meet
their deadlines.

PROOF. Let βACT (τhi ,∆, t) denote the actual provided service for task τhi . As
βl(τhi ,∆, t) ≥ dbf(τhi ,∆, t) is true for all high-critical tasks, one only needs to prove
that the actual service βACT (τhi ,∆, t) is equal to or greater than βl(τhi ,∆, t). We prove
this also by induction.

When n = 1,

βACT (τh1 ,∆, t) = βbd(τh1 ,∆, t) = βl(τh1 ,∆, t).

We assume βACT (τhi ,∆, t) ≥ βl(τhi ,∆, t) is true for the task τhn (n 6= 1). Then, for the
task τhn+1, we have

βACT (τhn+1,∆, t) = RT
(
βACT (τhn ,∆, t), α

u(τhn ,∆, t)
)

= sup
0≤λ≤∆

{
βACT (τhn , λ, t)− αu(τhn , λ, t)

}
.

As βACT (τhn , λ, t) ≥ βl(τhn , λ, t) and lb(τhn , λ, t) ≥ αu(τhn , λ, t), we have

βACT (τhn+1,∆, t) ≥ sup
0≤λ≤∆

{
βl(τhn , λ, t)− lb(τhn , λ, t)

}
= βl(τhn+1,∆, t).

Therefore, as βACT (τhi ,∆, t) ≥ βl(τhi ,∆, t) ≥ dbf(τhi ,∆, t) is true for all tasks, all
deadlines can be met.

6.1.3. Leaky Bucket Representation. From the Eqs. 8,5,6, we know the composition of
αu(τhi ,∆, t) is the minimum of a set of staircase functions, and every staircase function
is tracked by a dynamic counter. In principle, any leaky bucket can be used as long
as this leaky bucket is equal to or greater than αu(τhi ,∆, t). But, in order to make our
computation more tight, the leaky bucket should be as close to αu(τhi ,∆, t) as possible.
Since the leaky bucket corresponding to the staircase function with the largest stair
length in U(τhi ,∆, t) is close to αu(τhi ,∆, t) in the long term, the staircase function
with the largest stair length is thus used to compose a leaky bucket to represent the
workload arrival curve.

Since the largest stair length in a workload arrival curve and the WCET of each task
is known offline and unchanged during the runtime. Therefore, the leaky rate ri(t) is
fixed to be ci/δ#i , where δ#i is the largest stair length. Hence, 1−Ri(t) in Eq. 23 is also



known offline and fixed during the runtime. Then, to get βl(τhi ,∆, t), one only needs to
know the bucket size bi(t). Suppose for the task τhi , DC#

i is the counter for tracking
the chosen staircase function in Algo. 1. At time t, it can be derived from Eqs. 8, 5, 6
that

bi(t) = C(τi, t) + ci · |E(τi, t)|+ ci ·

 DC]i +
t−k]i ·δ

#
i

δ
#
i

if DC]i < N ]u
i

DC]i if DC]i = N ]u
i

(24)

where k]i is the auxiliary variable corresponding withDC]i in Algo. 1. Then, bi(t) is easy
to get by just applying Eq. 24. βl(τhi ,∆, t) can also be conveniently obtained as Ri(t) is
fixed and Bi(t) is easy to obtain with the support of Eq. 24.

6.1.4. Computing ρ∗(t). To solve the maximization problem with the constraint of
Eq. 21, the first step is to use current parameters in monitors to update βl(τhi ,∆, t) and
dbf(τhi ,∆, t). In this comparison, only a limited segment of ∆ needs to be compared. If
βl(τhi ,∆, t) ≥ dbf(τhi ,∆, t) in this limited segment, βl(τhi ,∆, t) ≥ dbf(τhi ,∆, t) in any
interval ∆.

In a schedulable system, suppose for a high-critical task τhi , at time t, there are
|E(τi, t)| events that are backlogged in the buffer, and the absolute deadline trace is
Di,j , where j indicates the j-th event, as shown in Fig. 11. ci is the WCET for this
high-critical task τhi .

LEMMA 6.3. If Di,x+1 −Di,x = δmaxi , where δmaxi is the maximum stair length and
x > |E(τi, t)|, then for the absolute deadline of k-th event (k ≥ x), we have

Di,k+1 −Di,k = δmaxi . (25)

PROOF. From Eqs. 8, 6, we know the deadline trace is decided by min
j=1..n′

(Uj(τhi ,∆, t))
and B(τhi ,∆, t). As x > |E(τi, t)|, the absolute deadline for the x-th event only
depends on min

j=1..n′
(Uj(τhi ,∆, t)). min

j=1..n′
(Uj(τhi ,∆, t)) is convex and is the minimum over

all staircase functions. For the x-th and (x + 1)-th events, if Di,x+1 − Di,x = δmaxi ,
it indicates that min

j=1..n′
(Uj(τhi ,∆, t)) only depends on the staircase function with the

largest stair length. For the k-th event (k ≥ x), min
j=1..n′

(Uj(τhi ,∆, t)) also depends on the

staircase function with the largest stair length. Hence, Di,k+1 −Di,k = δmaxi .

THEOREM 6.4. Suppose the task τhi is schedulable with a rate-latency function
βl(τhi ,∆, t). For the x-th and k-th event in lemma 6.3, if βl(τhi , Di,x, t) ≥ dbf(τhi , Di,x, t) ≥
0, we have βl(τhi , Di,k, t) ≥ dbf(τhi , Di,k, t).

PROOF. Assume βl(τhi ,∆, t) = max{0, r ·∆+b}, as βl(τhi , Di,x, t) ≥ dbf(τhi , Di,x, t) ≥ 0,
that is,

r ·Di,x + b ≥ dbf(τhi , Di,x, t),

r ·Di,x + b+ (k − x) · ci ≥ dbf(τhi , Di,x, t) + (k − x) · ci.

From lemma 6.3, as Di,k+1 − Di,k = δmaxi , dbf(τhi , Di,k+1, t) − dbf(τhi , Di,k, t) = ci. We
have

dbf(τhi , Di,k, t) = dbf(τhi , Di,x, t) + (k − x) · ci.
As r > ci

δmax
i

for a schedulable system, we have

r ·Di,x + b+ (k − x) · ci ≤ r ·Di,x + b+ r · (k − x) · δmaxi ≤ r ·Di,k + b

Therefore, βl(τhi , Di,k, t) = r ·Di,k + b ≥ dbf(τhi , Di,k, t).
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Theorem 6.4 indicates that, if a
rate-latency function βl(τhi ,∆, t) ≥
dbf(τhi ,∆, t) within an interval of
[0, Di,x], βl(τhi ,∆, t) will be greater than
dbf(τhi ,∆, t) in any interval. In this
paper, we define the earliest deadline
that satisfies Eq. 25 as the comparison
end deadline, as shown in Fig. 11. With
the theorem 6.4, to do the comparison
of Eq. 21, one only needs to compare
βl(τhi ,∆, t) with dbf(τhi ,∆, t) before the comparison end deadline. For example, as
shown in Fig. 11, there are only 5 deadlines before the comparison end deadline.
If βl(τhi , Di,j , t) is greater than dbf(τhi , Di,j , t) in these 5 deadlines, this rate-latency
function in other deadlines is also greater than the dbf(τhi , Di,j , t). As 0 ≤ ρ∗(t) ≤ Di,1,
we use the binary search to get the maximum ρ∗(t). The computing complexity for one
high-critical task is O(log(n)).

In short, for our proposed lightweight scheme, n inequalities need to be solved. As
we only need to get the maximum ρ∗(t) that makes all inequalities hold, it is not
necessary to compute ρ∗(t) for every inequality. The bubble sorting with one iteration
can be used to pick out the maximum ρ∗(t). It works like this, as shown in Fig. 12, we
start the searching with a very large ρ∗(t). As this large ρ∗(t) will make βl(τh1 ,∆, t) <
dbf(τh1 ,∆, t), a new ρ∗(t) will be computed by solving βl(τh1 ,∆, t) ≥ dbf(τh1 ,∆, t). This
ρ∗(t) is used in the second inequality. If the rate-latency function βl(τh2 ,∆, t) with ρ∗(t)
is greater than dbf(τh2 ,∆, t), this ρ∗(t) is used in the third inequality. If not, we compute
a new ρ∗(t) of the second inequality, and use this new ρ∗(t) in the third inequality. ρ∗(t)
is computed in this way until the last inequality. The computed ρ∗(t) is the maximum
LFII that satisfies all inequalities. The whole computing complexity is O(n · log(n)).

6.2. The Lightweight Method in Workload Management Policies
We have introduced a lightweight method to compute the low-critical workload bound
in the scenario where the priority of low-critical tasks is set as the highest. In
this section, we analyze how to apply such lightweight method to our two proposed
workload management policies.

6.2.1. The Lightweight Method in the Priority-Adjustment Policy. The problem of priority-
adjustment policy is how to search a feasible priority for low-critical tasks, that is,
to verify the system schedulability for every possible priorities assignment. Suppose
the priorities assignment is that P (τh1 ) > ... > P (τhk ) > P (τ l) > P (τhk+1) > ... > P (τhn ).
Under this setting, we present how the proposed lightweight method can be used to
verify the system schedulability.

Based on this priorities assignment, it can be derived that, by using the leaky bucket
to represent the workload arrival curve for every task, the provided services for high-



critical tasks are that,

βl(τhi ,∆, t) =

{
max{0, (1−Ri(t)) ·∆−Bi(t)} if i ≤ k
max{0, (1−Ri(t)) ·∆−Bi(t)−W (t)} if i > k , (26)

where Ri(t), Bi(t) are the same as Eq. 23, andW (t) is the workload of low-critical tasks
at time t. Except the priorities setting, the derivation of Eq. 26 is the same as Eq. 23.
For tasks τhi where i ≤ k, there is no interference from low-critical tasks, thus ρ∗ = 0.
For tasks τhi where i > k, there is the interference of W (t) from low-critical tasks.
Such interference W (t) can be considered as a leaky bucket lb(τ l,∆, t) = W (t) + 0 ·∆.
Therefore, the closed-form equation is still applicable.

With βl(τhi ,∆, t) of Eq. 26, if βl(τhi ,∆, t) ≥ dbf(τhi ,∆, t), ∀ i ∈ [1..n] does not hold,
the high-critical tasks are not schedulable, and the low-critical priority should be
decreased, until βl(τhi ,∆, t) ≥ dbf(τhi ,∆, t), ∀ i ∈ [1..n] holds.

6.2.2. The Lightweight Method in the Workload-Shaping Policy. The priorities setting in the
workload-shaping policy is the same as the scenario in Section 6.1. Since the maximum
ρ∗(t) can be computed with a low overhead in the scenario, such ρ∗(t) is used in
managing the low-critical workload by the shaper.

7. IMPLEMENTATION AND EVALUATION
In this section, we evaluate the two proposed adaptive workload management
policies and compare their performances with the offline approaches. The simulator
is implemented in MATLAB by applying MPA and RTC/S tools [Wandeler and Thiele
2006] on a simulation host with Intel i7-4770 processor and 16 GB RAM.

7.1. Evaluation Setup
We use the system shown in Fig. 2 for our experiments. The model contains a set
of low-critical tasks and a set of high-critical tasks, where each task set contains 5
independent tasks.

The activation pattern of high-critical tasks is a pjd model whose event arrival curve
is shown in Eq. 1. For any high-critical task τhi , the period pi is a random integer
from [100, 300]ms. The jitter ji is set to be equal to period. The distance di is set to
be an random integer from [0, p]ms. The relative deadline Di is set to be equal to the
period pi. Each task utilization U(τhi ) and a task set utilization U(τh) are defined as

U(τhi ) = ci/pi, U(τh) =
n∑
i=1

ci/pi, where ci is the task WCET and n is the task number

in a task set. Task utilizations are generated using the UUnifast [Bini and Buttazzo
2005], giving an unbiased distribution of utilization values. The WCET is set based on
the utilization and selected period, i.e., ci = pi ·U(τhi ). The priorities assignment among
high-critical tasks follows the principle of ensuring no high-critical task misses in the
case that no low-critical interference exists. The Audsley’s algorithm [Audsley 2001] is
applied to assign feasible priorities to all high-critical tasks. In the case that no feasible
priorities assignment is found for a task set, this task set is dropped and a new task set
is generated until a feasible priorities assignment is found. In the simulation, there are
four types of high-critical task set. The first type is named Type 1 whose utilization is
0.2. Successively, the second type is Type 2 with utilization 0.3, the third type is Type 3
with utilization 0.4, and the fourth type is Type 4 with utilization 0.5.

The low-critical tasks are activated sporadically, while their mean inter-arrival rates
were chosen such that together they impose an additional utilization. Their mean
inter-arrival intervals are in the interval [50, 100]. Denote the U(τ l) as the utilization
of the low-critical task set. All low-critical events follow the principle of first-come-
first-service, so there is no individual priority for the low-critical task. We don’t set the
deadlines for low-critical events, and don’t drop any low-critical events at runtime. For



a uniprocessor system, the utilization cannot exceed 1. Since the utilizations of the four
high-critical task sets are 0.2, 0.3, 0.4, 0.5, the ranges of low-critical utilization U(τ l)
w.r.t. Type 1, Type 2, Type 3, Type 4 are set to be [0.1, 0.8], [0.1, 0.7], [0.1, 0.6], [0.1, 0.5],
in order to constrain the utilization of all tasks within 1.

In this work, six workload management approaches are evaluated, as shown in the
following:

— Poffline: By setting the low-critical priority as the lowest, there is no interference on
high-critical tasks. In this approach, the priority controller or shaper is not necessary.

— Soffline: By setting the low-critical priority as the highest, the low-critical workload
is shaped to comply with the bound that is computed offline.

— Pexact: Applying the priority-adjustment policy proposed in Section 5.1 to manage
the low-critical workload. For searching the feasible priorities assignment in this
policy, the exact RT and backward computation are applied.

— Sexact: By setting the low-critical priority as the highest, the shaping policy proposed
in Section 5.2 is used to adaptively shape the low-critical workload so that no high-
critical tasks will miss their deadlines. The shaping bound is updated by applying
the exact backward computation.

— Plight: In contrast to the Pexact method by applying the exact RT and backward
computation, the lightweight method proposed in Section 6 is used to do the priority
adjustment in this approach.

— Slight: In contrast to the Sexact method that applies the exact backward
computation, the lightweight method proposed in Section 6 is used to update the
shaping bound in this approach.

For every simulation, we simulate high-critical event traces with a 10 sec time span.
In order to evaluate the performance of different workload management approaches,
the following four metrics are used.

— System Utilization Us: Suppose tu is the cpu time within 10 sec that is used to process
tasks. System utilization Us is referred to tu/10. Us represents how much extent that
the system processing capacity can be exploited.

— Average Response Time of Low-Critical Tasks RL: This metric is referred to the
average time span between the time that a low-critical event arrives and the time
that this event is finished. RL reflects the QoS of low-critical tasks.

— Latency Ratio of High-Critical Task Set LH : Suppose Di is the relative deadline of
a high-critical task and Ri is its average response time, then the task set latency

ratio is referred to be
n∑
i=1

(
Ri/Di

)
/n, where n is the task number in this task set. LH

reflects the influence of workload management approaches on the latency of high-
critical tasks.

— Timing Overhead of Decision Making To: For both the exact and the lightweight
methods, To is referred to the computation time needed to update the priority
assignments or to release a low-critical event.

Note that Us may not be equal to U(τh) +U(τ l) because LO-critical tasks may not be
fully served.

7.2. Simulation Results
In the following, we report simulation results for the listed four types, and the
computation expenses by applying the exact computation and by applying the
lightweight method in our proposed workload management policies. Under every
specific setting of U(τh) and U(τ l), 1000 test cases are generated to evaluate the
performance of different workload management approaches. All the result figures are
best seen in color online.
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Fig. 13. The system utilization w.r.t the utilization of low-critical tasks
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Fig. 14. The average response time of low-critical events
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Fig. 15. The latency ratio of high-critical events

7.2.1. System Utilizations. The system utilizations of different workload management
approaches working in the four types are shown in Fig. 13. From it, we find that, except
Soffline, the system utilizations of using other approaches increase linearly with the
utilization of low-critical tasks, and the highest system utilizations can almost reach
1. This shows that, all approaches except the Soffline, can fully make use of the system
resources to process LO-critical and HI-critical tasks. The reason for the low system
utilization of using Soffline is that the offline shaping bound is quite pessimistic, which
results in a lot waste of processing resource.

7.2.2. Average Response Time of Low-Critical Tasks. The average response times of low-
critical tasks w.r.t. four types of high-critical task sets are seen in Fig. 14. In general,
we make three main observations.

— First, the shaping offline performs the worst among the six approaches. Fig. 14
shows that the average response time of using Soffline can be hundred times larger
than that of using other methods. This is because the offline shaping bound is very
pessimistic. If the utilization of low-critical events exceeds this bound, many low-
critical events will be delayed for a long time.

— Second, the average response times of using Poffline are larger than those of using
four online methods with the exception that Slight performs worse than Poffline
when utilization of low-critical tasks is large in Types 3, 4. By setting the priority
of all low-critical tasks as the lowest, low-critical events cannot be processed ahead
of high-critical events, so the service that low-critical tasks receive is lower than
that of applying the priority-adjustment policy. By using the online shaping, the low-



critical event can be processed ahead of the high-critical event only when the WCET
of low-critical event is smaller than the computed LFII. In the four types, the WCET
of low-critical event is smaller than the computed LFII in most cases, except the case
of applying Slight when both U(τ l) and U(τh) are greater than 0.3.

— Third, Sexact, Pexact, and Plight achieve almost the same average response time in
the four types, while Slight performs badly in Type 3 and Type 4. This demonstrates
that the lightweight computing method achieves the same results as using the
exact computing methods by priority-adjustment policy. The lightweight method of
workload-shaping policy is the same as the exact method only when U(τh) is small.

7.2.3. High-Critical Task Set Latency Ratio. The high-critical task set latency ratio w.r.t.
four types of sets are seen in Fig. 15. In general, we make three main observations.

— Poffline has the lowest latency ratio, because the high-critical tasks are served
without the interference from low-critical tasks.

— In the four types, the latency ratio of Soffline first increases, then keeps constant.
The latency ratio increases because the low-critical interference increases. However,
the Soffline imposes a threshold on the low-critical interference. Once the low-critical
interference exceeds this threshold, low-critical interference will be throttled, and the
latency ratio of high-critical tasks will not increase. Besides, from Type 1 to Type 4 of
Fig. 15, it can be seen that this threshold decreases with the increase of U(τh).

— With the increasing of U(τ l), the latency ratios of Ponline and Plight first increase
and then decrease. In the priority-adjustment policy, the latency ratio will be
increased if high-critical tasks receive an increasing low-critical interference.
However, as U(τ l) increases, the low-critical workload also increases, which will
result in that priorities of high-critical tasks will be set higher than low-critical
priority after low-critical workload exceeds a certain threshold.

From Fig. 15, we also observe that the offline approaches have smaller latency ratio
than the online approaches. This indicates that the online approaches sacrifice some
QoS for high-critical tasks to improve the QoS of low-critical tasks. However, since
the timing requirements of all high-critical tasks are sufficiently met, such sacrifice is
worthwhile to improve the QoS of low-critical tasks.

7.2.4. Timing Overheads of Decision Making. For the priority-adjustment policy, the low-
critical priority has to be adjusted when a low-critical event arrives or the execution
of a low-critical event finishes, by using the Algo. 2 or Algo. 3 to decrease or increase
the low-critical priority. We report the computation expenses of applying Algos. 2, 3
to adjust the priority. Fig. 16(a) shows the worst, best and average case computational
expenses of using the exact and lightweight methods w.r.t. the number of high-critical
event streams. In Fig. 16(a), the average computational expense of one stream is
0.83ms by using the exact method, and 0.034ms by using the lightweight method.
From Algos. 2, 3, we know the complexity of searching feasible priority increases
with the increase of the streams, which can be found that the computational expense
increases with the increase of streams in this figure. In general, the computational
expense of lightweight method is one order of magnitude lower than that of the exact
method by priority-adjustment policy.

The workload-management policy depends on the LFII to shape the low-critical
workload. The LFII is updated when the shaper is in Lfii updating state and a
high-critical event is finished. Fig. 16(b) shows the worst, best, and average case
computational expenses of updating the LFII w.r.t. the number of high-critical event
streams. The average computational expense of one stream is 3.15ms by using the
exact method, and 0.031ms by using the lightweight method. For the ten streams,
the average computational expenses of the two methods are 18.5ms and 0.14ms. In
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(b) Workload-shaping policy
Fig. 16. Computation expense of the two adaptive workload management policies

general, the computational expense of lightweight method is two orders of magnitude
lower than that of the exact method.

From the above results, we find that the workload-shaping policy is effective when
low-critical events have low WCETs but may become ineffective when their WCETs are
high. The workload-shaping policy is generally effective in regulating different kinds
of events, while suffering the problem of frequent priority changes that will incur
some extra runtime overheads. Therefore, from the perspective of implementations
in a real platform, combining the two policies could be a possible solution that can
overcome their own drawbacks and thus become more effective than using the two
policies individually. In this article, since we focus on the evaluations of proof-of-
concept simulations and the effectiveness of such practical implementations rely on
the specific hardware platforms, the combination of the two approaches is thus not
discussed.

8. CONCLUSIONS
In this article, we develop the adaptive workload management in MCSs to improve
the QoS of low-critical tasks, while sufficiently guaranteeing the hard real-time
constraints of high-critical tasks. The priority-adjustment policy and the workload-
shaping policy have been presented. In order to make the two polices applicable
in the online cases, the lightweight method was proposed to replace the complex
RT computation and backward derivation in the schedulability verification during
the runtime. Simulation results demonstrate the effectiveness of the two adaptive
workload management policies, and show the low timing overhead of the lightweight
method.
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