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Runtime monitoring is of great importance as a safeguard to guarantee the correctness of system
runtime behaviors. Two state-of-the-art methods, dynamic counters and l-repetitive function, were recently
developed to tackle the runtime monitoring for real-time systems. While both are reported to be efficient
in monitoring the arbitrary events, the monitoring performance between them has not yet been evaluated.
This article evaluates both methods in depth, to identify their strengths and weaknesses. New methods are
proposed to efficiently monitor the many-to-one connections that are abstracted as AND and OR components
on multiple inputs. Representative scenarios are used as our case studies to quantitatively demonstrate the
evaluations. Both methods are implemented in hardware FPGA. The timing overhead and resource usages
of implementing the two methods are evaluated.
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1. INTRODUCTION
For the class of hard real-time embedded systems, meeting timing constraints, such
as the deadline for every task execution, is a fundamental requirement. Therefore,
a large amount of research has been devoted to the design-time schedulability
analysis at different abstraction levels. The resulting schedule of an analyzed system,
however, relies on the assumption that all system events conform to the specifications
used by the design-time analysis. But with the increasing complexity of embedded
systems, runtime events may not conform to the design-time specifications. For
example, in mixed-criticality systems, the system may be overloaded by the low-critical
tasks [Neukirchner et al., 2013b; Neukirchner et al., 2013a]. Therefore, runtime
monitoring is important to further guarantee that the system timing properties comply
with the design-time analysis. Runtime monitoring also helps to improve system
performance. System events are often regulated by a designed shaper in order to
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reduce the task response time or the interference on other tasks [Phan and Lee, 2013;
Wandeler et al., 2012]. The shaping approach relies on an accurate monitoring on the
arriving events.

To design an efficient monitoring scheme, there are two crucial requirements. Firstly,
the verification performed by the monitor should be accurate. For the hard real-time
system, verification must strictly exclude false positives (erroneous acceptance of the
sequence), as this will threaten the safety of the overall system. At the same time,
the number of false negatives (erroneous blocking of the sequence) needs to be kept
to a minimum, i.e., the blocking of non-violation behavior should be avoided in order
to increase the processor utilization as much as possible. This means the pessimistic
estimate is often used to strictly rule out all the violations to guarantee the safety
of the system, and should be lightweight due to its frequent activations and the tight
resource budgets of the system [Lampka et al., 2011; Neukirchner et al., 2012]. It is not
easy for a monitoring scheme to meet both aforementioned requirements as ensuring
better accuracy often requires a complex monitoring scheme, which in-turn demands
more computing power. Therefore, the monitoring scheme should be carefully designed
in order to maintain both accuracy and efficiency.

Two state-of-the-art online monitoring algorithms have been recently developed: dy-
namic counters (DCs) monitoring [Lampka et al., 2011] and l-repetitive function (LRF)
monitoring [Neukirchner et al., 2012]. Both monitoring algorithms are based on the
arrival curve model that is capable of capturing arbitrary event arrival patterns in
the time interval domain. The DCs monitoring assumes that an arrival curve can
be conservatively approximated by a set of staircase functions and each staircase
function can be monitored by a counter [Lampka et al., 2011]. The minimum of a set
of dynamic counters gives the burst capacity of a system at (mission) time t. The LRF
monitoring assumes that an l-repetitive function can be constructed in a maximum
busy-window period, then a history of arrival time of most recent l events is kept
to monitor coming events [Neukirchner et al., 2012]. The LRF is also a lightweight
method of monitoring arbitrary event streams. Although both monitoring algorithms
are reported to be efficient, their monitoring differences are unexplored.

Both DCs and LRF are designed to monitor the inputs with only one connection. With
the exception of the one-to-one connection, many-to-one connections are also common
in realistic embedded systems. To the best of our knowledge, there is no work in the
literature that discusses how to monitor the many-to-one connections. In this article
we discuss the monitoring method of many-to-one connections that are abstracted as
OR and AND components [Jersak, 2005; Wandeler, 2006]. As shown in Fig. 1(a), OR
component indicates that the output is generated whenever any input is available. An
OR component is often used in the task callings. A task with a specific function is often
called by many other tasks, and this task with the specific function will be activated no
matter which task calls it. AND component indicates that the output is generated only
when events are available in every input, as shown in Fig. 1(b). A common use of the
AND component is the system synchronization. In parallel computing, a task is often
activated only when all other parallel tasks return their results. The output trace from
OR and AND components is complex, making it difficult to directly implement DCs and
LRF to monitor these components. Therefore, a new monitoring mechanism is needed
to monitor the OR and AND components.

This article investigates in depth both newly developed runtime monitoring
methods, DCs monitoring and LRF monitoring, to evaluate their performance and
identify their strengths and weaknesses with respect to different event arrival
patterns. Better knowledge of the differences in the modeling scope, the corresponding
monitoring accuracy, and computation or memory overhead for these two methods
may be beneficial for using these techniques. We also develop a DCs-based method to



(a) Monitoring input with OR component. (b) Monitoring input with AND component.

Fig. 1: Diagram of OR and AND dependencies.
monitor the standard periodic burst event streams. Furthermore, for the input classes
that are abstracted by AND and OR on multiple input event streams, new methods
are proposed to complement the existing methods. The contributions of this article are
summarized as follows.

— The performance of DCs and LRF monitoring are evaluated based on the event
patterns. The strengths and weaknesses with respect to different event patterns are
identified.

— The extension of DCs is explored to monitor the periodic events with jitter and
periodic burst events.

— The methods of online monitoring output events with the component of AND or OR
are proposed.

— All the monitoring methods are implemented in FPGA, and the timing and resource
overheads of FPGA are reported.

The rest of this article is structured as follows. We review related work in the next
section. In Section 3, basic background knowledge of the used techniques is described.
In Section 4, we present the monitoring performance differences between the DCs
method and the LRF method with different event arrival patterns. In Section 5, we
present new approaches to monitor the output event with many-to-one components. A
concrete case study is presented to show the DCs and LRF monitoring performance
in Section 6. In Section 7, FPGA experiments show resource overhead and timing
latencies of both methods. Section 8 concludes the paper.

2. RELATED WORK
Runtime monitors are used to ensure that the system runtime behaviors are
constrained within a reliable range. There exists different kinds of monitoring
architectures, targeted at different runtime behaviors. In the following, according to
the system specifications, we group the monitoring into two aspects which are, the
functionality monitoring and the timing monitoring.

In the functionality monitoring, a novel time-triggered approach was introduced
in [Bonakdarpour et al., 2011; Bonakdarpour et al., 2013] to reduce the monitoring
overhead and the system unpredictability. The time-triggered monitoring needs to find
an optimal sampling period, so that the required auxiliary memory will be minimized
and the monitor still correctly tracks the program state. In [Medhat et al., 2014],
a control-theoretic approach was proposed to improve the time predictability, and
ensures the soundness of verification by incorporating a maximally utilized bounded
memory buffer. Experimental results of monitoring the functioning of a Toyota 2JZ
engine showed that the overshoots were reduced and the time predictability was
improved by applying this control-theoretic monitoring approach. The control-theoretic
approach was extensively explored for coordinating time predictability and memory
utilization in runtime monitoring of systems in [Medhat et al., 2015]. Three real-
life cases were used to study the effect of this control-based monitoring in [Medhat
et al., 2015]. Results of this work showed that the memory utilization and the time
predictability were greatly improved with control-based monitoring.



The timing monitoring focuses on guaranteeing the system timing properties.
A powerful model to analyze the system timing properties is Real-Time Calcu-
lus (RTC) [Thiele et al., 2000]. The arrival curves in RTC define the upper and lower
bounds on the events number within a fixed interval. In [Lampka et al., 2009], a hybrid
methodology was presented to analyze the system performance by using the timed
automata to imitate the arrival curves. This methodology was extended to generalize
more patterns, including the periodic with jitter, for the conversion of arrival curves
to timed automata in [Lampka et al., 2010]. Based on this work, Lampka et al.
subsequently proposed using DCs to predict future coming events in [Lampka et al.,
2011]. Neukirchner et al. presented a lightweight monitoring method for arbitrary
activation patterns in [Neukirchner et al., 2012]. The task activation patterns are
modelled as minimum distance functions, which describe lower bounds on the temporal
distance between consecutive activations. In order to reduce the monitoring overhead,
an l-repetitive minimum distance function is constructed to represent the original
minimum distance function.

Based on the both methods, several monitoring methods and task scheduling
schemes are proposed. Huang et al. [Huang et al., 2012] prototyped DCs in FPGA
to conform the runtime inputs for hard real-time systems. The LRF monitoring
is extended to monitor the group of low-criticality events in mixed-criticality
systems [Neukirchner et al., 2013b; Neukirchner et al., 2013a]. By using LRF to
guarantee sufficient temporal independence among partitions, the interrupt latency
is greatly improved in a real-time hypervisor. Although DCs and LRF are reported to
be efficient, their differences have not yet been explored. In this article, based on the
real-time events pattern, the monitoring differences of DCs and LRF are investigated.

Also in this article, the new schemes in monitoring AND and OR component are
proposed. In [Jersak, 2005; Jersak and Ernst, 2003], Jersak et al. proposed to use
the standard activation pattern resulting from the boolean operation on the various
input event streams to embed many-to-one connections within their compositional
framework [Richter et al., 2003a]. However, the analysis is not tight because the
compositional framework must use a limited set of classical arrival patterns to present
the input activation pattern. Haid et al. [Haid and Thiele, 2007] presented a tighter
analysis on the delay and backlog for OR-activations and AND-activations in modular
performance analysis by directly using the input activation patterns. Research to date
on the many-to-one connections deals with the offline analysis on the system timing
properties. In this article, the DCs method is extended to monitor the output events
from the AND and OR components.

3. BACKGROUND
Both DCs monitoring and LRF monitoring share the same event model inherent to
the Real-Time Calculus (RTC) [Thiele et al., 2000], and the SymTA/S approach [Henia
et al., 2005], respectively. The event model is used as the connection between different
resources or tasks in real-time systems. In this section, we first provide the basic
definitions about event models then introduce the DCs and LRF monitoring methods.

3.1. Event models
Event models in real-time systems describe how often events (or function calls) arrive
and data provided as input to the system. In Network Calculus [Le Boudec and Thiran,
2001], the concept of arrival curve was proposed to abstract the data flow. RTC extends
the concepts of Network Calculus to the domain of real-time embedded systems. In
RTC, the event streams are abstracted as a tuple α(∆) = [αu(∆), αl(∆)] of upper
and lower arrival curve that provide an event stream model, representing all possible
traces of an event stream [Wandeler, 2006].



Definition 3.1. (Arrival Curve) Let R[s, t) denote the number of events arriving on
an event stream in the time intervals [s, t). Then, R, αu and αl are related to each
other by the following inequality

αl(t− s) ≤ R[s, t) ≤ αu(t− s), ∀t ≥ s ≥ 0 (1)

with αl(0) = αu(0) = 0.

The upper arrival curve αu(∆) provides an upper bound on the number of events
seen on the event stream in any time interval of length ∆, and analogously, the lower
arrival curve αl(∆) provides a lower bound on the number of events in a time interval
∆. In RTC, arrival curve, together with the resource model, is used to analyze system
performances.

In the SymTA/S method, events are bounded by the minimal distance function and
maximum distance function and are defined as follows [Henia et al., 2005]:

Definition 3.2. (Minimum Distance Function) The minimum distance function
dmin(n) specifies the minimum distance between n + 1 consecutive events in an event
stream.

Definition 3.3. (Maximum Distance Function) The maximum distance function
dmax(n) specifies the maximum distance between n+ 1 consecutive events in an event
stream.

At the component level, SymTA/S uses the minimum distance function to get the
busy window and based on the busy window, the system behaviors are analyzed.
From these definitions, one can see that the minimum/maximum distance function
and arrival curve provide the events bound with respect to time. Minimum distance
function also limits the event number within a time interval, which is the same as
upper arrival curve. The maximum distance function requires that the event number
cannot be less than a specification, which is the same as lower arrival curve. For
example, for periodic events with jitter, the arrival curves are

(a) Upper Arrival Curve : αu(∆) =
⌊∆ + J

δ

⌋
(b) Lower Arrival Curve : αl(∆) = max

{
0,
⌊∆− J

δ

⌋} (2)

where δ is the period, and J is the jitter. If the periodic events are expressed with the
minimum/maximum distance functions, they should be

(a) Minimum Distance Function : dmin(n) = max{0, n · δ − J}
(b) Maximum Distance Function : dmax(n) = n · δ + J

(3)

where dmin(n) and dmax(n) describe a lower bound and an upper bound on the time
interval between the occurrences of the first and the last event in any sequence of n+1
consecutive events in the event trace.

Since events should be bounded by arrival curve or minimum/maximum distance
function at runtime, the monitor is used to verify that all events conform to the
designed bound. Based on the arrival curve model, the DCs monitoring is proposed.
Based on the minimum distance function, the LRF monitoring is proposed.

3.2. DCs monitoring
The DCs are used to predict the upper bound of future events, based on which

the power mode is adaptively managed in [Lampka et al., 2011]. In this case, the
constructed arrival curve should be larger than the real arrival curve. However, since



ALGORITHM 1: Implementing a dynamic counter to monitor a staircase function
Input:

signal s, .tuple < DCi, CLKi >;
Output:
1: if s = CLKi_timeout then
2: DCi ← min(DCi+1,Nu

i )
3: reset_timer(CLKi, δui )
4: end if
5: if s = event_arrival then
6: if DCi = 0 then

7: report_exception
8: else
9: if DCi = Nu

i then
10: reset_timer(CLKi, δui )
11: end if
12: DCi ← DCi − 1
13: end if
14: end if
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Fig. 2: The two types of approximation curve.

false positives are not allowed if the monitor is used to monitor events, the constructed
arrival curve for the monitor to guard should be less than the real arrival curve.

In principle, any monotonous and time-invariant arrival curve can be conservatively
approximated as the minimum on a set of staircase functions with the form αui (∆) =
Nu
i + b∆

δi
c, where Nu

i is the initial value of this staircase function and δi is its stair
length [Lampka et al., 2009].

∀∆ ∈ R≥0 : αu(∆) ≥ min
i=1..n

(αui (∆)). (4)

An example is shown in Fig. 2(a). An upper arrival curve is the minimum of two
staircase functions. For every staircase function (αui ), a dynamic counter (DCi) and
a timer (CLKi) are used to conform events to it. The detail algorithm is shown in
Algo. 1 [Lampka et al., 2011]. The use of DCi in Algo. 1 is to update the potential burst
the system can accept during the runtime. The maximum value of DCi is Nu

i , which
indicates that the burst events should not exceed min

i=1..n
Nu
i . The timer CLKi is used to

check the updating time of DCi. The violation happens when DCi = 0.



3.3. LRF monitoring

ALGORITHM 2: Implementing l-repetitive function to monitor an event stream
Input:

current time, trace buffer[l], d[l];
Output:
1: for i ∈ [0, l − 1] do
2: if current time - trace buffer[i] < d[i]

then

3: report_exception
4: end if
5: end for
6: right shift trace buffer
7: trace buffer[0] = current time

Arrival events are also bounded by the minimum distance function. An l-repetitive
distance function is a special minimum distance function that satisfies the following
condition:

d(n) =

{
dn(given), n ≤ l,
max
ω∈[1,l]

(d(ω) + d(n− ω)), n > l. (5)

Figure 2(b) shows an l-repetitive minimum distance function with l = 4. For such
l-repetitive function, it has been shown that the arrival time of the most recent l
events is sufficient to verify whether or not future events will conform to the predefined
minimum distance function. The detail monitoring algorithm with l-repetitive function
is shown in Algo. 2 [Neukirchner et al., 2012]; the arrival time of most recent l events
is maintained. Everytime a new event arrives, the time gap between the current event
and the past l events is used as a comparison to the minimum distance function. If the
time gap is smaller than the designed minimum distance, the exception is reported.

In [Neukirchner et al., 2012], authors propose to use a part of minimal distance
function to represent distance function. This proposal is based on two assumptions:

ASSUMPTION 1. For verification of timing constraints, only a part of the minimal
distance function is relevant. The relevant domain is [1, nmax], where nmax depends on
the scheduling policy of the resource.

ASSUMPTION 2. The execution sequence of tasks on a resource only depends on the
number of pending activations (events) of all tasks and the state of the scheduler (if it is
stateful).

As implied by these two assumptions, the distance between two events, which
are sufficiently far apart, does not influence the scheduling on a resource. For the
schedulers that can be analyzed with busy-window approach, such as static priority
preemptive (SPP), rate monotonic scheduling (RMS) and earliest deadline first (EDF),
the above two assumptions hold. At runtime, when the system reaches an idle state,
i.e., no pending events, the events history can be neglected, as the past events no longer
impact the system.

From these assumptions, it is deduced that only a part of the d function is relevant
for verification of timing constraints. The relevant domain is [1, nmax], where nmax
is the number of events in the maximum system busy-window period [Tindell et al.,
1994]. Then we only need to use the part of [1, nmax] of minimum distance function in
constructing the l-repetitive function. The detailed method of constructing l-repetitive
function is explained in [Neukirchner et al., 2012].
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Fig. 3: Arrival curves of three types of event stream.

4. MONITORING ALGORITHM COMPARISON BASED ON REPRESENTATIVE ARRIVAL
CURVES

As presented in the previous section, DCs monitoring works by using a set of staircase
functions to approximate the upper arrival curve, while LRF monitoring works by
using the repetitive segment to approximate the minimum distance function. The
accuracy of using these two methods for monitoring different typical event streams
depends on the approximated degree.

In this section, according to the specifications of arrival curve, the event streams
are categorized into three types. The first type is the periodic events, whose arrival
curve is the staircase function. The second type is the periodic or sporadic events with
an initial burst, whose arrival curve is the staircase function with an inital burst.
The third type is the periodic burst events. The arrival curves of these three types
of event streams are shown in Fig. 3. In the following, the monitoring performance is
investigated towards monitoring the three types of event streams. The DCs monitoring
method is improved towards some specific event arrival curves.

4.1. Periodic events
The upper arrival curve of the periodic or sporadic events can be modeled as the
staircase function, as shown in Fig. 3(a). It indicates that the minimum temporal
gap between two successive events is δ. For this kind of arrival curve, either DCs
monitoring with one counter or LRF monitoring with l = 1 can be used to monitor
the periodic event. As one staircase function is guarded by one counter, there is no
error for DCs monitoring. For LRF monitoring, by keeping the arrival time of the most
recent event, the minimum temporal gap between the coming event and the previous
event can be strictly guaranteed. Therefore, there is no error.

4.2. Periodic events with an initial burst
The assumption of periodic events is overly restrictive. Many periodic events exhibit a
so called initial burst that captures the distortion that a periodic event stream might
experience. Figure 3(b) shows the upper arrival curve of a periodic event stream with
an initial burst. A widely used model to specify the event stream with an initial burst
is the PJD model, where the arrival curve is characterized by period p, jitter j, and
minimal interarrival distance d. In the PJD model, the upper arrival curve can be
determined as αu(∆) = min{d∆+j

p e, d∆
d e} and can be represented as the minimum of

two staircase functions. The parameters of the two staircase functions can be computed
as follows [Lampka et al., 2009]:{

Nu
1 = d j

p
e+ 1, δu1 = p; if d = 0 ∨ d ≤ p− j,

Nu
1 = d j

p
e+ 1, δu1 = p; Nu

2 = 1, δu2 = d; if d > 0 ∧ d > p− j. (6)



ALGORITHM 3: Implementing a dynamic counter to monitor the periodic event with jitter
Input: signal s, .tuple < DCi, CLKi >
1: if s = CLKi_timeout then
2: if DCi = Ni then
3: reset_timer(CLKi, δi − J ′i)
4: else
5: DCi ← min(DCi+1,Ni)
6: reset_timer(CLKi, δi)
7: end if
8: end if
9: if s = event_arrival then

10: if DCi = 0 then
11: report_violation
12: else
13: if DCi = Ni ∧ CLKi < δi − J ′i then
14: reset_timer(CLKi, δi − J ′i)
15: end if
16: DCi ← DCi-1
17: end if
18: end if

This approximation of Eq. 6 is not conservative. For the hard real-time system, the
approximated arrival curve is not allowed to exceed the actual upper arrival curve.
Otherwise, some violated events will not be verified as the non-violation event, which
harms the safety of the system. To make the approximated arrival curve lower than
the real arrival curve, Nu

1 = d jpe+ 1 should be changed to Nu
1 = d jpe. The DCs and LRF

method in monitoring periodic events with an initial burst are discussed as follows.

4.2.1. DCs monitoring. The DCs method proposed in [Lampka et al., 2011] can only
guard the arrival curve represented as the overlay of staircase functions. There are
also some arrival curves, like periodic event stream with jitter, that cannot be exactly
represented as the overlay of staircase functions. The arrival curve of periodic event
stream with jitter is represented as a shifted staircase function. In [Lampka et al.,
2010], the timed automata that can generate the periodic event trace is extended to
generate the periodic event trace with jitter by using a factor to refine the period
and offset. It is theoretically possible to use DCs to accurately monitor the periodic
events with jitter by using the similar approach as extending the timed automata
from [Lampka et al., 2010]. However, in this article, we propose another new approach
which can also take the jitter into account.

For a periodic event stream with jitter, if the jitter is greater than the period, there
will be an initial burst [Wandeler, 2006].

αi(∆) =
⌈

∆ + Ji
δi

⌉
= Ni +

⌊
∆ + J ′i
δi

⌋
, (0 < J ′i < δi), (7)

where Ni is the initial burst. In this case, DCs can monitor the arrival curve with
J ′i = 0. If J ′i 6= 0, J ′i will be skipped by the DCs monitoring. Being aware that this kind
of arrival curve is the staircase function left shifted by jitter, the idea of monitoring this
type of event stream is to include the jitter in the DCs monitoring algorithm. Before
introducing the new algorithm, we provide a definition of initial phase. The initial
phase is used to introduce an offset of J ′i in the DCs monitoring.

Definition 4.1. (Initial Phase) For a periodic event stream with jitter, suppose the
period is δi and the jitter is Ji, the initial phase is referred as δi − J ′i , where J ′i =
Ji mod δi.

The improved DCs algorithm is shown in Algo. 3. Compared to the monitoring
method of DCs in [Lampka et al., 2011], there are two more considerations of using
DCs to monitor the periodic events with jitter. The first consideration is that the initial
phase of DCs monitoring is used to reduce the temporal gap between the burst events
and the following event. Since the next event after the initial burst is allowed after
δi − J ′i , the initial value of a timer is already set as δi − J ′i . The second consideration is



the judge of the renewal point. The renewal point is the time the potential burst DCi
and the timer returns back to the initial burst and initial phase, respectively. Since
there exists an offset of J ′i of arrival curve compared to staircase function, the timer of
a renewal point should be equal to or less than the initial phase.

There are two triggering signals in Algo. 3. One is the timeout and the other is the
event arrival. If J ′i = 0, Algo. 3 is the same with DCs monitoring in Algo. 1. If J ′i 6= 0,
the timer starts from the phase of δi − J ′i . The timer goes down with the system clock.
When the timer comes to 0, a timeout happens. This is a sign that one more event can
be accepted. The renewal point in Algo. 3 is referred to as the state DCi = Ni and
CLKi < δi − J ′i (line 3 and line 14). If a renewal point is found by the Algo. 3 when
timeout happens, the timer phase is reset to δi − J ′i . If not, the timer phase is reset to
δi. The event arrival will trigger the violation verification. If DCi = 0, the new arrival
event is a violation. If not, the event is accepted by the system, and DCi should be
reduced by 1.
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Fig. 4: Arrival curve of periodic events with
jitter (black solid line) that is the minimum
of two staircase functions. The red dash
line represents a more conservative arrival
curve that is segmentally repetitive and is
used in LRF monitoring. The shadow area
shows the error between the arrival curve
and the approximated curve.

Based on the Algo. 3, for any time
interval (s, t], DCi can be computed as:

DCi(t) = min
(
DCi(s) +

⌊ t− s+ J ′i
δi

⌋
−R(s, t), Ni

)
,

(8)

where R(s, t) denotes the number of
arrival events in the time interval [s, t).
The Eq. 8 can guarantee that arrival
events will never run against the arrival
curve. Besides, the jitter will not be
skipped by Algo. 3. Since the improved
DCs method can consider the case when
the jitter exists, the PJD type whose
arrival curve is min{d∆+j

p e, d∆
d e} can be

fully guarded by DCs method.

4.2.2. LRF monitoring. For the LRF mon-
itoring, a repetitive segment should be
constructed. Suppose the first repetitive
segment is αgl as given in the offline analysis. The arrival curve for the l-repetitive
minimum distance function can be expressed as follows:

αl(∆) =

{
αgl (∆)(given), if ∆ ≤ dl,
k · l + αgl (∆− k · dl), if ∆ > dl,

(9)

where k is the largest integer that makes ∆− k · dl < dl when ∆ > dl.
If the arrival curve of periodic events with an initial burst is modeled as

min{d∆+j
p e, d∆

d e} (p > d > 0), there is a gap between αl and αu, as shown in Fig. 4.
Since the monitoring only allows the false negatives for the hard real-time system,
the approximated arrival curve of repetitive segment should always be lower than the
actual arrival curve.

The monitoring accuracy by LRF monitoring depends on the closeness of the
approximated arrival curve and the original arrival curve, i.e., how much the error
area in Fig. 4 is. We therefore define the monitoring error to represent the monitoring
accuracy of verifying events based on the approximated arrival curve.

Definition 4.2. (Monitoring Error) Suppose the actual arrival curve is αu and
the approximated arrival curve is α̃. For the hard real-time system, αu ≥ α̃. The



monitoring error (ME (∆)) of verifying arrival events based on α̃ is referred to that
within an interval of ∆,

ME(∆) =

∣∣∣∣∣
∫∆

0
(αu(t)− α̃(t))dt

α̃(∆)

∣∣∣∣∣. (10)

From Fig. 4, it can be found that the ME reflects the worst-case conforming delay for
every event. Suppose events arrive as early as possible, that is, the runtime arrival
pattern is exactly the same as αu(t). If the monitor conforms all events to comply with
α̃(t), the unnecessary delay per event within ∆ is represented by the ME of Eq. 10.
The smaller the ME is, the closer to αu(t) the α̃(t) is. Hence, the ME represents the
monitoring accuracy.

We can see that the ME is a function with respect to two arrival curves and the
monitoring interval. To reflect the monitoring accuracy in a long time, the monitoring
interval should be large.

4.3. Periodic burst events
In contrast to periodic events with an initial burst, events burst happens periodically
for the periodic burst event stream. The LRF method is capable of monitoring periodic
burst events. As the arrival curve of periodic burst events (as shown in Fig. 3(c)) is
segmentally repetitive, the LRF method can monitor the events by keeping the trace of
the repetitive segment. Specifically, suppose the length of repetitive segment is dl and
contains l events. Keeping most recent l events is sufficient to conform events as the
whole arrival curve for the LRF monitoring.

The arrival curve of periodic burst events is the non-convex pattern. According
to [Lampka et al., 2010], the non-convex pattern can be handled by making use of
subsets of convex patterns and local synchronization for obtaining local minima and
maxima. Following this indication, we provide a detailed method for monitoring the
periodic burst events.

There are two kinds of periodic burst events: standard and nonstandard. In
the following, we discuss how to apply DCs method to monitor the standard and
nonstandard periodic burst events.
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Fig. 5: The diagram of periodic burst pattern equivalence.

4.3.1. Standard
periodic burst events.
The authors
in [Neukirchner et al.,
2012] claim that DCs
algorithm is invalid to
monitor periodic burst
events. In this article,
a new scheme using DCs is developed to monitor standard periodic burst events.

Fig. 6: The flow of monitoring periodic
burst arrival events.

The standard periodic burst events
model is characterized by three pa-
rameters, which are, an interval δ, a
minimum timing separation d between
successive events, the maximum events
b within the interval δ, as shown in
Fig. 5. The upper arrival curve can
be expressed as follows [Richter et al.,
2003b],

αu(∆) =
⌊

∆

δ

⌋
b+ min

(⌈∆− d∆
δ
eb

d

⌉
, b
)
. (11)



ALGORITHM 4: Online monitoring of a periodic burst arrival event pattern.
Input:

signal sd, sδ, tuple < DCd, CLKd >,
tuple < DCδi , CLK

δ
i > and event queue q1,

q2;
Output:
1: Algorithm 1← (sd, tuple < DCd, CLKd >)
2: Algorithm 1← (sδ, tuple < DCδi , CLK

δ
i >)

3: if report_exception(sd) then
4: q1.enqueue();
5: end if
6: if report_exception(sδ) then
7: q2.enqueue();
8: end if

9: while q1.length()>0 ∧ DCd > 0 do
10: q1.dequeue
11: DCd = DCd − 1
12: end while
13: while q2.length()>0 ∧ max(DCδi ) > 0 do
14: q2.dequeue
15: for i← 1 to n do
16: if DCδi > 0 then
17: DCδi = DCδi − 1
18: break
19: end if
20: end for
21: end while

Although the periodic burst arrival curve cannot be approximated as the minimum
of a set of staircase functions, it can be equivalent to a special logic composition of
staircase functions. As shown in Fig. 5, periodic burst arrival curve is decomposed to
a staircase function with a period of d and b staircase functions with a period of δ. A
counter corresponding to the period d and b counters corresponding to the period δ are
used to guarantee that the minimal distance between two events is larger than d and
the number of events within any δ interval is smaller than b.

The detailed procedures are shown in Fig. 6 where R represents the events that
are monitored and R∗ represents the output events trace. The monitor first checks
whether or not the arrival events comply with d∆

d e. If not, a buffer is used to store
the arrival events. If yes, the monitor checks whether or not the arrival events comply
with the b staircase functions. b staircase functions are assumed to be equivalent, i.e.,
any event is acceptable if it does not violate any of the respective staircase functions. If
no counters can accept an event, this event is a violation and will be delayed by buffer.
Note that the two buffers in Fig. 6 are separated and the buffer obeys first-in-first-out
principle. The pseudo code of this monitoring algorithm is shown in Algo. 4.
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Fig. 7: Arrival curve of periodic burst
events (red solid line) that is segmentally
repetitive. The black dash line represents a
more conservative arrival curve that is the
minimum of a set of staircase functions and
is used in DCs monitoring.

4.3.2. Nonstandard periodic burst events.
For nonstandard periodic burst events,
the events burst is periodic but the
timing separation between two events
within the burst is different. If DCs mon-
itoring is used in conforming events as
periodic burst events, the minimum of a
set of staircase functions ( min

i=1..n
{αi}, αi =

Nu
i + b∆

δi
c) is assumed to approximate

αl, where δmax = max
i=1..n

{δi}, as shown
in Fig. 7. In the case that ∆ = +∞,
we have min

i=1..n
{αi} = Nu

n + b ∆
δn
c, where

δn = δmax = max
i=1..n

{δi}. If we require

lim
∆=+∞

{
αl(∆)− min

i=1..n
{αi(∆)}

}
=

∆

dl
l−Nu

x−
⌊

∆

δmax

⌋
≥ 0,

(12)



we have to set that dl ≤ l · δmax. The ME (defined in Eq. 10) can also be used to
represent the monitoring accuracy.

5. MONITORING MANY-TO-ONE CONNECTIONS
In the many-to-one connection that is abstracted as the OR or AND dependency, the
output arrival curve is often irregular. For the irregular arrival curve, the DCs and
LRF methods rely on using more constraint arrival curves to approximate OR or AND
component. But this approximation may not be tight, especially in cases where the
difference between the approximated arrival curve and the irregular arrival curve is
large. Therefore, another more accurate monitoring method is needed for monitoring
the output event with the OR or AND component.

From [Haid and Thiele, 2007], we found that the output arrival curve of OR or AND
component is an algebraic combination of input arrival curves. The logical relationship
inherent to this type of algebraic combination can be explored by using DCs to verify
whether the output events of OR or AND components comply with the output arrival
curve. It is not easy to apply the LRF method to monitor output events. There are
two main reasons for this. On the one hand, the algebraic combination between input
arrival curve and output arrival curve cannot be easily explored. The LRF method
relies on the minimum distance function. Although an algebraic combination exists
between input arrival curve and output arrival curve, no such relationship exists
between input minimum distance function and output minimum distance function. On
the other hand, the LRF method relies on constructing the l-repetitive function. Since
the output minimum distance functions may be very irregular, it is difficult to find
a tight l-repetitive function that can closely represent the output minimum distance
function. Based on the two reasons, we only focus on using DCs to monitor the output
events of OR or AND component.

5.1. OR component
The definition of OR component implies that the output event is generated each time
an event is available from any input. So the following theorem holds [Haid and Thiele,
2007].

THEOREM 5.1. Assume an output with the OR dependency on n event inputs. The
input event streams are modeled as abstract event streams with arrival curve αu1 , αu2 ,
..., αun. Then, the output arrival curve can be modeled by the arrival curve αuor that

αuor = αu1 + αu2 + ...+ αun. (13)

From Eq. 13, the output arrival curve of OR component is the sum of input arrival
curve indicating that output events can be accepted only if the sum of arrival events
is not over αuor. This is a kind of group monitoring, which is different from setting
a monitor in every input. The monitoring method that attributes a monitor in every
input requires that the input events cannot exceed the respective input arrival curve.
In the real case, there is only a restriction on the sum events instead of a restriction in
every input. By setting only one monitor in the OR component, the system utilization
can be improved as one input may exceed its budget at the cost of another input.

The problem of monitoring output events with OR component is formulated as
follows. Given an OR component with n periodic-with-jitter inputs, how do you
guarantee that the output events will not exceed the output arrival curve by
monitoring the output event. As the periodic-with-jitter inputs are common in real-
time systems [Phan and Lee, 2013], we concentrate on the monitoring methods with
all periodic-with-jitter inputs.



The critical idea of monitoring event stream constrained by αuor is that DCs are used
to bound every input arrival curve and the sum of input arrival curve can be bounded
by the DCs. According to the subsection 4.2, the monitoring of a periodic event stream
with jitter only needs one dynamic counter. For the n periodic event streams with jitter,
n DCs are needed. Since the connection is boolean OR dependency, only one counter
is needed to be responsible for a coming event. The coming event is the violation only
when all counters are 0. Then the problem is how to choose the responsible counter
that can strictly bound the output events by αuor.

Before providing the solution of finding out the responsible counter, an example of
monitoring OR component is first introduced.

Example 5.2. In an OR connection with two inputs, the two input arrival curves
are α1 = 1 + b∆

3 c, α2 = 1 + b∆
2 c. Then the output arrival curve is αuor = 2 + b∆

3 c+ b∆
2 c.

Two DCs are used to bound the output events, where DC1 is for α1 and DC2 is for α2.
When the first event is checked at the output, the system capacity is reduced by 1, no
matter which counter is responsible for this event. From αuor, the system capacity after
2 time units will return to 2. If DC1 is responsible for the first event, it will take 3 time
units for the system capacity to go back to 2, which is contradicted with αuor. So DC2

should be responsible for the first event.

From Ex. 5.2, the responsible counter for an event is the counter that can give the
system the largest capacity as quickly as possible. From the Eq. 13, the system capacity
at any time t is:

capacity(t) =

n∑
k=1

DCk(t). (14)

LEMMA 5.3. For any coming event, if a counter can be found as a responsible counter
that makes the system capacity the greatest in the shortest time, the output events can
be strictly bounded as αuor by using n DCs.

PROOF. There are two requirements that the output events with αuor are strictly
bounded by using n DCs, i.e., there are no false negatives and no false positives.

No false negatives: From αuor, the output events can be accepted in the worst case:
all input events arrive as the designed input arrival curve. As for every output event, n
DCs can give the system the greatest capacity, which indicates that worst-case output
events can be accepted. If one event is checked as the violated event, then this event
violates the worst case, which also violates the αuor.

No false positives: Since n DCs are used to bound the sum of n periodic event streams
with jitter. Every counter can bound an input event stream, the total input event
streams are thus bounded by using n DCs.

THEOREM 5.4. Assume DCi(t) and CLKi(t) are the values of counters and timers at
the time t in monitoring output events with OR component. If at the time t0, an output
event is checked, where t−0 and t+0 denote the time before and after the monitoring trigger.
The responsible counter is the counter with the smallest ∆′, where ∆′ satisfies⌊

∆′ + δi − CLKi(t
+
0 )

δi

⌋
= Nu

i + 1−DCi(t−0 ). (15)

The proof is seen in Them. 9.1 in the Appendix.
∆′ in Eq. 15 is called the capacity influence time (CIT) in this article. The CIT can

be directly calculated by Eq. 15. The Algo. 5 is used to obtain the counter with the
smallest CIT. Due to the fact that in Algo. 3 a renewal point is checked whenever an
event is accepted, and CLKi(t

+
0 ) may be different from CLKi(t

−
0 ) in a renewal point,



in line 2 of Algo. 5 CLKi(t
+
0 ) is first checked. In line 3, CIT is calculated. In line 5, the

counter with the smallest CIT is selected.

ALGORITHM 5: the counter with the smallest CIT

Input: [DCi, CLKi].
1: for i← 1 to n do
2: CLK†i ← (DCi = Nu

i ∧ CLKi > J ′i)?J ′i : CLKi

3: CITi ← (Nu
i −DCi) ∗ δui + CLK†i

4: end for
5: return i, where CITi =

n

min
k=1
{CITk}

5.2. AND component
AND component indicates that the output event is generated only if all events are
available in each input. Thus the following theorem holds [Haid and Thiele, 2007].

THEOREM 5.5. Assume a component by AND connection with two input event
streams that are modeled as abstract event streams with arrival curve [αu1 , α

l
1] and

[αu2 , α
l
2]. Then, the output event streams can be modeled with the arrival curve

αuand = max
{

min{αu1 � αl2 +B0
1 −B0

2 , α
u
2},min{αu2 � αl1 +B0

2 −B0
1 , α

u
1}
}
, (16)

where B0
1 and B0

2 denote the initial buffer fill level of the two input buffering ports, with
the constraint that min{B0

1 , B
0
2} = 0, i.e., one of the buffers must initially be empty.

The idea of monitoring output events with AND component is that, the output arrival
curve from AND component is derived as the maximum of a set of periodic-with-jitter
models. Dynamic counters can then be used to monitor the set of periodic-with-jitter
models.

LEMMA 5.6. For two periodic event streams with jitter (e.g., α1 = [αu1 , α
l
1], α2 =

[αu2 , α
l
2], where αu1 = d∆+J1

δ1
e, αl1 = max(0, b∆−J1

δ1
c), αu2 = d∆+J2

δ2
e, αl2 = max(0, b∆2−J2

δ2
c),

(δ1 < δ2), then ∀∆, αu1 � αl2(∆) = +∞, and αu2 � αl1(∆) = αu2 (∆ + δ1 + J1).

The proof is seen in the Appendix.
With Lemma 5.6, the following theorem holds:

THEOREM 5.7. For two input streams with AND component, the output arrival
curve is αuand = max{αu2 ,min{αu2′ , αu1}}, where αu2′ = αu2 (∆ + δ1 − J1) +B0

2 −B0
1 .

PROOF. From Lemma 5.6, it can be concluded that min{αu1 �αl2 +B0
1−B0

2 , α
u
2} = αu2 ,

and min{αu2�αl1+B0
2−B0

1 , α
u
1} = min{αu2 (∆+δ1−J1)+B0

2−B0
1 , α

u
1} = min{αu2′ , αu1}, where

αu2′ = αu2 (∆ + δ1 − J1) +B0
2 −B0

1 . Then from Eq. 16, αuand = max{αu2 ,min{αu2′ , αu1}}.
Since αu2 , αu2′ and αu1 are staircase functions with jitter, 3 DCs may be needed to

monitor the event streams with αu2 , αu2′ , αu1 . Note that, if periods of all input event
streams are the same, the needed counter number may be only one. Let DC2, DC2′ ,
and DC1 denote the counter values w.r.t. αu2 , αu2′ and αu1 . From max{αu2 ,min{αu2′ , αu1}},
it is deduced that every counter is responsible for the arrival events, which means all
counters should be reduced by one for accepting one event. To constrain that an event
will not violate max{αu2 ,min{αu2′ , αu1}}, it is required that max{DC2,min{DC2′ , DC1}}
is not less than 0. The details about min and max in monitoring can be seen in [Lampka
et al., 2011; Huang et al., 2012].
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Fig. 8: Analysis model of the MPEG-2 decoder mapped onto an MpSoC platform
The aforementioned approach is not limited to monitoring the output events by AND

connection with only two input event streams. For more input event streams, this
approach can also be applied, as stated in the following theorem.

THEOREM 5.8. DCs can also be used to monitor the output event stream by AND
connection with more than 2 periodic event inputs with jitter.

PROOF. Assume the number of inputs is n (n ≥ 2), and the arrival curve in every
input is denoted as αi (where δ1 < δ2 < ... < δn, δi is the period). The output arrival
curve is derived as

αuand = max{α′1, α′2, ..., α′n}, (17)

where α′i = min{
n⋃

j=1,j 6=i
{αuj � αli}, αui }. Assume δ1 < δ2 < ... < δn. Then for αuj � αli,

if j < i, αuj � αli is infinity. If j > i, then αuj � αli is left shifted δi − Ji of αuj . So

α′i = min{
n⋃

j=1,j 6=i
{αuj � αli}, αui } is the minimum of a set of staircase functions with

jitter. Therefore, αuand is the maximum of a set of minimum of staircase functions with
jitter. DCs can be used to monitor the event stream constrained by αuand.

5.3. Effectiveness
In this section, we extend the DCs method into monitoring the OR and AND
components. It is theoretically proven that, if the event streams that flow into the
OR and AND components are periodic-with-jitter patterns, the presented DCs method
is sufficient. The arrival curve that the DCs method guards is the same as the original
arrival curve. In the case that the input event streams are not periodic-with-jitter
patterns, the presented DCs method in this section is invalid. A conservative arrival
curve that is the minimum of a set of staircase functions or is a repetitive function
may need to be constructed so that the DCs or LRF monitoring methods can be applied,
where the monitoring accuracy lies on the ME defined in Eq. 10.

6. CASE STUDY: MPEG-2 DECODER
The MPEG-2 Decoder is used as a case study in this section to demonstrate the
applicability and effectiveness of our proposed monitoring methods.



Table I: Tasks and Their Specifications

Stream Task Function Best/Worst case execution
time (103 cycles) Priority

video

A VLD, IQ, IS [5, 10] 2
B data transfer [1, 1] 2
C IDCT, MC [3, 4] 1
D data transfer [1, 1] 1
E assemble video-frames [0.1, 0.1] 3

audio
F DEC, IMDCT, SYN [500, 1000] 2
G data transfer [100, 100] 3
H assemble audio-frames [10, 10] 1

- I play back control [2, 2] 4

MPEG-2 decoder is used to decode the video and audio. This application is
processed in a heterogeneous platform with a RISC processor (750 MHz) and a DSP
processor (250 MHz). The two processors communicate with each other by a BUS (125
MHz). The specific subtasks of MPEG-2 decoder are mapped to the two processors as
shown in Fig. 8, which is the same as [Haid and Thiele, 2007]. The specifications of the
subtasks are seen in Table. I, where all parameter values come from [Haid and Thiele,
2007]. An AND component is used to synchronize the assembly of video stream, audio
stream, and a referred basis line. All tasks are scheduled by the non-preemptive fixed-
priority scheduling policy.

In Fig. 8,R1 represents the input video, andR2 represents the input audio. There are
three scenarios about the arrival patterns of R1 and R2, which are shown as follows:

— Scenario 1: the input arrival patterns of R1 and R2 are set as the strictly periodic
pattern. The arrival speed is set as 40 frames/s.

— Scenario 2: the input arrival patterns of R1 and R2 are set as periodic pattern, while
with 3-period jitter. The arrival speed is set as 40 frames/s.

— Scenario 3: the input arrival patterns of R1 and R2 are set as periodic burst pattern
whose specific parameters are that δ = 180ms, b = 6, d = 20ms, as shown in Eq. 11.

Scenario 1 is a very common situation that many videos and audios need to comply
with. Scenario 2 is also a possible situation, because there might be other workload on
the second bus that delivers video and audio streams to RISC and DSP. Such workload
may lead to the jitter of R1 and R2. Scenario 3 is the artificial scenario where R1

and R2 are conformed to the periodic burst pattern on purpose. In these scenarios,
we set one monitor named M1 to ensure the correctness of video frames passing from
BUS to DSP, and another monitor named M2 to ensure the correctness of the AND
component. The ref input is set as the strictly periodic frame stream with the speed
of 40 frames/s. Under these three scenarios, the arrival curves that the monitor M1

and M2 should comply with can be known by applying the Real-Time Calculus analysis
in [Perathoner et al., 2009; Haid and Thiele, 2007].

6.1. Results
The arrival curves w.r.t., the three scenarios at the two monitors are seen in Fig. 9. It
can be found that, the arrival curves at the monitor M1 are the same as the arrival
curves of R1 with a slight jitter. Since one dynamic counter is sufficient to monitor the
periodic-with-jitter event stream, there will be no error of applying DCs to monitor
events at M1 in the scenarios 1, 2, as shown in Fig. 10(a). As regard to the scenario 3,
the arrival curve at M1 is the standard periodic burst pattern with a slight jitter. Both
DCs and LRF methods can be applied to effectively monitor the periodic burst event
stream. To use the DCs method presented in Section 4.3.1, the number of counters
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Fig. 9: The arrival curve that the two monitors need to guarantee
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Fig. 10: The monitoring accuracy of DCs and LRF at M1 w.r.t., the number of counters
and the number of events in the repetitive segment, respectively
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Fig. 11: The monitoring accuracy of DCs and LRF at M2 w.r.t., the number of counters
and the number of events in the repetitive segment, respectively

should be 7. However, the slight jitter of periodic burst arrival pattern is not able to be
considered by using DCs and LRF methods.

The metric ME is used to evaluate the monitoring accuracy of the two methods at M1,
where ∆ of ME is set to be sufficiently long. As shown in Fig. 10(a), for the scenarios
1, 2, one counter is sufficient. For the scenario 3, 7 counters are needed to increase the
monitoring accuracy. It can also be seen that, one counter can guard the periodic and
the periodic-with-jitter event stream. And even for scenario 3, the monitoring of using
one counter is also accurate. Fig. 10(b) shows the accuracy of using LRF method at M1.
Similar to one counter, l = 1 can guard the periodic event stream, i.e., the staircase
function. For the scenarios 1 and 3, by using a staircase function to conservatively
represent the arrival curve, the ME is small. While for the scenario 2, the LRF is not
so effective because the jitter of the arrival curve is large.



The arrival curves at M2 are seen in Fig. 9(b). Although there are 3 input event
streams, the arrival curves of scenario 1, 2 are also staircase functions with jitter
because periods of the 3 input event streams are the same. Hence, one counter is
sufficient to monitor it. As regard to the scenario 3, the arrival curve is neither
staircase function nor periodic burst function. Nevertheless, a set of staircase functions
can still be used to conservatively represent it. The ME of DCs is shown in Fig. 11(a),
where one counter is sufficient in the scenarios 1, 2. The ME decreases with the
increase of counters in the scenario 3. The ME of using LRF is seen in Fig. 11(b).
For the scenario 1, l = 1 is accurate enough because the jitter is very small. For the
scenario 2, since the jitter is not small, the ME is also not small. The arrival curve
in the scenario 3 is not periodic burst, thus the ME of using LRF decreases with the
increase of l, but cannot be 0.

6.2. Insights gained from the results
In the first two scenarios, the ME of applying the DCs method is very small in the
long run, due to that the DCs method is sufficient to monitor the periodic or periodic-
with-jitter event streams. The effectiveness of the LRF method on the periodic-with-
jitter arrival pattern relies on the jitter size. If the jitter is large, the monitoring may
not be effective. If the jitter is small, the LRF method may still be effective. Besides,
for the monitoring of AND component, the output arrival curves in scenarios 1, 2 are
also periodic-with-jitter patterns because the periods of the three input event streams
are the same. In the scenario 3, the arrival curve that the monitor needs to guard is
irregular, the DCs or LRF method can only rely on constructing an arrival curve to
represent the original arrival curve, which results in a large ME.

7. IMPLEMENTATION OVERHEAD EVALUATION

Fig. 12: Block diagram of the FPGA testbed

It can be found in Algo. 1 that
the DCs method relies on a lot
of timers and frequent timer
interrupts. Because of this, it
is not easy to implement this
method as a software in a
normal processor with a limited
number of timers. To evaluate
the implementation overhead
of the DCs and LRF monitor-
ing methods, both methods are
implemented in FPGA because
the FPGA provides numerous
timers and the timer interrupt
is not necessary for a hardware
IP. We investigate the following
three metrics of implementing
the DCs and LRF methods.

— Resource Overhead.
— Monitoring Latency.
— Maximum Running Frequency.

We first consider the effect of the number of used DCs and the number of segments
within LRF on the three metrics. Then, we investigate the influence of our proposed
methods of monitoring OR or AND component on the three metrics.



7.1. Implementation setup
The monitor is configured as an FPGA IP module. As shown in Fig. 12, this FPGA IP
module contains four submodules. The EventSyn module checks the coming event
signal and data, and transmits them to FIFO. The FIFO module is used to buffer
regulated events. The OutPutCtrl module controls the release of data. Dynamic
Counter module or l-repetitive module is used to regulate the output of event streams.
After this configuration, the correctness of the configured IP is verified in ModelSim.

7.2. The results of the DCs monitoring and the LRF monitoring
7.2.1. Resource overhead. After testing the correctness of our Verilog HDL code in

ModelSim, we synthesize the implementations in Quartus using ALTERA Cyclone III
EP3C120F780 device. In this test, we only concentrate on the resource overhead of
each monitoring method.

For the DCs monitoring, the resource overheads mainly depend on the number of
used DCs. For the LRF monitoring, the resource overheads also depend on the l within
LRF. Hence, we investigate the influence of the two factors on the resource overhead.
For the DCs monitoring, we choose six dynamic counters to be 1 to 6 with the increment
of 1. For the l-repetitive monitoring scheme, we choose six l values. l values are 5 to
30 with increments of 5. The resource usage of the configured IP is represented by
three components in the FPGA, which are logic elements, registers, and logic array
blocks (LABs).
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Fig. 13: Results of resource usage after synthesis

As depicted in Fig. 13, the
resource usage is linear with
increasing l or number of
dynamic counters. Resource
usage of 5-repetitive moni-
toring is almost the same as
4 dynamic counters, which
counts less than 0.3% of
the total resources (total
logic elements is 119,008
in this FPGA board). This
illustrates that the resource
overhead of the two monitoring methods is very low.

7.2.2. Monitoring latency. As for the monitoring timing latency, it is observed in
ModelSim that 5 clock cycles (1µs) are needed to transfer an event from the input
to the output if data is not prevented from being sent out. The timing latency is the
same in both monitoring methods and keeps constant with different l or number of
dynamic counters because both methods are able to be executed in parallel in FPGA
hardware. This result indicates that the timing overhead of both monitoring methods
is considerably small, which has little influence on the system timing behavior.

Table II: Frequency Specifications (Unit: MHz)

#counters of DCs 1 2 3 4 5 6

DCs 165.36 168.21 157.07 159.13 149.26 132.09
l of LRF 5 10 15 20 25 30

LRF 159.12 155.33 143.46 145.87 132.18 127.67

7.2.3. Maximum working frequency. The maximum working frequency of the DCs and
LRF methods relies on the complexity of the arrival curve that both methods need to
guard. Under the Model slow 1200mV 85C, the maximum working frequencies w.r.t.,



the needed #counters of the DCs and l of the LRF are listed in Tab. II. It can be seen
that, the maximum frequency decreases when the #counters or l increases generally.

7.3. The results of monitoring methods on OR and AND components
We apply the monitoring methods on OR or AND component with FPGA and evaluate
the monitoring effectiveness by inspecting the resource usage, monitoring delay, and
runtime maximum frequency. Eight event streams are chosen as the basic streams to
study the FPGA implementation. The eight event streams are periodic-with-jitter type
with the arrival curve αui = Nu

i + b∆+Ji
δi
c, where the specifications of Nu

i , δi and Ji are
shown in Tab. III.

Table III: Parameter Specifications

αu1 αu2 αu3 αu4 αu5 αu6 αu7 αu8

Nu
i 1 3 5 7 9 11 13 15

δi[µs] 20 100 180 260 340 420 500 580
Ji 10 50 90 130 170 210 250 290

7.3.1. Resource overhead. The resource results are shown in Fig. 14. As depicted in
the figure, the increasing speed of the curve of monitoring output events from AND
component is greater than that of monitoring output events from OR component.
For the OR component, the resource overhead increases linearly with the number of
input event streams. For the AND component, from Lem. 5.6 and Them. 5.8, we can
derive that the needed counter number is n(n+1)

2 , where n is the number of input event
streams. Therefore, the needed resource usage is quadratic with the number of inputs.
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Fig. 14: Resource usage of different monitoring method IPs

7.3.2. Timing latency.
It is observed that
the timing latency of
monitoring the OR
component is n + 7
cycles, where n is the
number of input event
streams, due to that
picking up CIT in
Algo. 5 relies on serial
execution. However,
the timing latency of monitoring the AND component is still 5 cycles because there is
no dependency in running the program to monitor AND component. Program runs in
parallel so that 5 cycles is still enough.

7.3.3. Maximum working frequency. We then investigate the runtime maximum fre-
quency of using this IP. From the compiling report, we get the maximum frequency
on Model slow 1200mV 85C, as shown in Tab. IV. It can be found that the runtime
maximum frequency is not strictly monotonous with input stream number. In general,
the larger the input stream number, the smaller the maximum frequency will be.

8. CONCLUSIONS
The DCs and LRF monitoring methods are both proposed to verify the single pre-
defined event arrival curve. The DCs method relies on the assumption that any
monotone and time-invariant arrival curve can be conservatively approximated as the
minimum of a set of staircase functions, while the LRF method assumes only nmax



Table IV: Frequency Specifications (Unit: MHz)

Number of streams 1 2 3 4 5 6 7 8

OR composition N/A 140.45 111.06 128.21 101.52 105.08 92.44 90.84
AND composition N/A 156.25 134.99 117.07 109.7 123.21 82.17 83.51

activated events are relevant for verification of timing constraints. Based on these
assumptions, another arrival curve is constructed to represent the original pre-defined
arrival curve. The DCs and LRF methods will verify whether or not the coming events
comply with the constructed arrival curve.

Since the coming events are verified based on the constructed arrival curve, the
monitoring effectiveness depends on two factors: the difference between original pre-
defined arrival curve and the constructed arrival curve, and the counter number for
DCs method or l for LRF method. The ME is defined to represent the difference between
original pre-defined arrival curve and the constructed arrival curve. ME =0 means
that the monitoring method is sufficient because the arrival curve that the monitoring
method guards is exactly the same as the pre-defined arrival curve.

In this article, the event arrival patterns are categorized into three types, which
are, periodic, periodic events with an initial burst, and periodic burst. Besides, the
monitoring methods in verifying the output events from the OR and AND components
are explored. Towards different event streams, we now have the following conclusions.

— Periodic event stream: both DCs and LRF methods are sufficient. Only one counter
or l = 1 is needed.

— Periodic event stream with an initial burst: if this burst is only a jitter of a periodic
event stream, only one counter is needed. If not, the counter number depends on how
many staircase functions that are needed for representing the arrival curve. The
effectiveness of the LRF method depends on the burst. If the burst is small, the LRF
will be effective by setting l = 1 to verify the arriving events as the periodic events.
If not, the LRF may not be effective.

— Periodic burst event stream: for the standard periodic burst event stream, the DCs
method is sufficient. The needed counters is b + 1, where b is defined in Eq. 11. The
LRF method is sufficient, where l = b + 1. For the nonstandard periodic burst event
stream, the DCs method is not sufficient.

— OR component: if the event streams that come into the OR component are periodic-
with-jitter arrival pattern, the DCs method is sufficient. The needed counter number
is the same as the number of input event streams. The LRF method is not discussed.

— AND component: if the event streams that come into the AND component are
periodic-with-jitter arrival pattern, the DCs method is sufficient. If all periods are
the same, the needed counter number may be only 1. If no periods are the same, the
needed counter number is n(n+1)

2 , where n is the number of input event streams. The
LRF method is also not discussed.
Furthermore, the MPEG-2 decoder is studied to present the monitoring effectiveness

of using DCs and LRF methods. In this case, three scenarios are considered, where
the DCs and LRF methods are shown to be effective in some specific scenarios. By
implementing both monitoring methods in FPGA, we show that the resource usage of
implementing the DCs and LRF methods is quite low, and the monitoring latency is
negligible. The implementation of monitoring methods on OR and AND components
are also investigated. The results show that, the monitoring latency on OR component
is linear with the number of input event streams and the monitoring latency of AND
component is still 5 cycles. It is also found that the maximum frequency can be over
100 MHz if there are less than 7 input event streams under Model slow 1200mV 85C.



9. APPENDIX
THEOREM 9.1. Assume DCi(t) and CLKi(t) are the values of counters and timers

at the time t in monitoring output events with OR component. If at the time t0, an output
event is checked, where t−0 and t+0 denote the time before and after the monitoring trigger.
The responsible counter is the counter with the smallest ∆′, where ∆′ satisfies⌊

∆′ + δi − CLKi(t
+
0 )

δi

⌋
= Nu

i + 1−DCi(t−0 ) (18)

PROOF. Assume DCi is the responsible counter. Then, at the time t+0 + ∆, the
following equation holds,

DCi(t
+
0 + ∆) = DCi(t

+
0 ) + qi(∆, t

+
0 ), where

qi(∆, t
+
0 ) = min

(
Nu
i −DCi(t+0 ),

⌊∆ + δi − CLKi(t
+
0 )

δi

⌋) (19)

The system capacity at the time t+0 + ∆ is:

capacity(t+0 + ∆) =

n∑
k=1

DCk(t+0 ) +

n∑
k=1

qk(∆, t+0 ). (20)

n∑
k=1

DCk(t+0 ) =
n∑
k=1

DCk(t−0 ) − 1, no matter which counter is responsible for the event.

The system capacity at the time t+0 + ∆ is only decided by
n∑
k=1

qk(∆, t+0 ).

For DCi as the responsible counter,
n∑
k=1

qik(∆, t+0 ) =

n∑
k=1,k 6=i,j

qk(∆, t+0 ) + min
(
Nu
i + 1−DCi(t−0 ),

⌊∆ + δi − CLKi(t
+
0 )

δi

⌋)
+

min
(
Nu
j −DCj(t−0 ),

⌊∆ + δj − CLKj(t
+
0 )

δj

⌋) (21)

where DCi(t+0 ) = DCi(t
−
0 )− 1, DCj(t+0 ) = DCj(t

−
0 ).

If a different counter DCj is chosen as the responsible counter,
n∑
k=1

qjk(∆, t+0 ) =

n∑
k=1,k 6=i,j

qk(∆, t+0 ) + min
(
Nu
i −DCi(t−0 ),

⌊∆ + δi − CLKi(t
+
0 )

δi

⌋)
+

min
(
Nu
j + 1−DCj(t−0 ),

⌊∆ + δj − CLKj(t
+
0 )

δj

⌋) (22)

where DCi(t+0 ) = DCi(t
−
0 ), DCj(t+0 ) = DCj(t

−
0 )− 1.

Set ∆i and ∆j satisfy that:⌊∆i + δi − CLKi(t
+
0 )

δi

⌋
= Nu

i + 1−DCi(t−0 ),
⌊∆j + δj − CLKj(t

+
0 )

δj

⌋
= Nu

j + 1−DCj(t−0 ).

(23)

For ∆ < ∆i,

min
(
Nu
i + 1−DCi(t−0 ),

⌊∆ + δi − CLKi(t
+
0 )

δi

⌋)
= min

(
Nu
i −DCi(t−0 ),

⌊∆ + δi − CLKi(t
+
0 )

δi

⌋)
.

(24)



For ∆ < ∆j ,

min
(
Nu
j + 1−DCj(t−0 ),

⌊∆ + δj − CLKj(t
+
0 )

δj

⌋)
= min

(
Nu
j −DCj(t−0 ),

⌊∆ + δj − CLKj(t
+
0 )

δj

⌋)
.

(25)

Then, if ∆i ≤ ∆j , for ∆ ≤ ∆i ≤ ∆j , it can be deduced that
n∑
k=1

qik(∆, t+0 ) ≥
n∑
k=1

qjk(∆, t+0 ). (26)

DCi should be chosen as the responsible counter. If ∆j ≤ ∆i, for ∆ ≤ ∆j ≤ ∆i, it can
be deducted that

n∑
k=1

qjk(∆, t+0 ) ≥
n∑
k=1

qik(∆, t+0 ). (27)

DCj should be chosen as the responsible counter.
Then, for any counters, the responsible counter is the counter with the smallest ∆′,

where ∆′ satisfy the Eq. 15.

LEMMA 9.2. For two periodic event streams with jitter (e.g., α1 = [αu1 , α
l
1], α2 =

[αu2 , α
l
2], where αu1 = d∆+J1

δ1
e, αl1 = max(0, b∆−J1

δ1
c), αu2 = d∆+J2

δ2
e, αl2 = max(0, b∆2−J2

δ2
c),

(δ1 < δ2), then ∀∆, αu1 � αl2(∆) = +∞, and αu2 � αl1(∆) = αu2 (∆ + δ1 + J1).

PROOF. First, we prove αu1 � αl2 is an infinite to any ∆.

αu1 � αl2(∆) = sup
λ≥0
{αu1 (∆ + λ)− αl2(λ)} = sup

λ≥0

{⌈∆ + λ+ J1

δ1

⌉
−max

(
0,
⌊λ− J2

δ2

⌋)}
≥ sup
λ≥0

{⌊ λ
δ1

⌋
−
⌊ λ
δ2

⌋
−
⌈J2

δ2

⌉}
.

Since δ1 < δ2, we can set δ1 = c ∗ δ2, (0 < c < 1). Therefore,

sup
λ≥0

{⌊ λ
δ1

⌋
−
⌊ λ
δ2

⌋}
≥ sup
λ≥0

{(1

c
− 1
) λ
δ2
− 1
}
,

where ( 1
c − 1) λδ2 is a wide increasing function. So sup

λ≥0
{b λδ1 c − b

λ
δ2
c} is infinity, and αu1 �

αl2(∆) is also infinity.
Now we prove αu2 � αl1 is left shifted δ1 + J1 of αu2 .

αu2 � αl1(∆) = sup
λ≥0
{αu2 (∆ + λ)− αl1(λ)} = sup

λ≥0

{⌈∆ + λ+ J2

δ2

⌉
−max

(
0,
⌊λ− J1

δ1

⌋)}
.

Consider 0 ≤ λ < δ1 + J1, then max(0, bλ−J1δ1
c) = 0. So

αu2 � αl1(∆) = sup
0≤λ<δ1+J1

{αu2 (∆ + λ)− αl1(λ)} = sup
0≤λ<δ1+J1

{⌊∆ + λ+ J2

δ2

⌋}
=
⌈∆ + J2

δ2
+
δ1 + J1

δ2

⌉
.

For λ ≥ δ1+J1, max(0, bλ−J1δ1
c) = bλ−J1δ1

c, and d∆+λ+J2
δ2

e−bλ−J1δ1
c = b∆+λ+J2+δ2

δ2
c−bλ−J1δ1

c
is a decreasing function because δ1 < δ2. So

αu2 � αl1(∆) = sup
λ≥δ1+J1

{⌈∆ + λ+ J2

δ2

⌉
−
⌊λ− J1

δ1

⌋}
=
⌈∆ + J2

δ2
+
δ1 + J1

δ2

⌉
.

Therefore, αu2 � αl1 = d∆+J2
δ2

+ δ1+J1
δ2
e.
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